The physiological function of kainate receptors (GluK1-GluK5) in the central nervous system is not fully understood yet. With the aim of developing potent and selective GluK1 ligands, we have synthesized a series of new thiophene-based GluK1 agonists (6a-c) and antagonists (7a-d). Pharmacological evaluation revealed that they are selective for the GluK1 subunit, with 7b being the most subtype-selective ligand reported to date (GluK1 vs GluK3). The antagonist 7a was cocrystallized with the GluK1 ligand binding domain, and an X-ray crystallographic analysis revealed the largest flexibility in GluK1 ligand binding domain opening upon binding of a ligand seen to date. The results provide new insights into the molecular mechanism of GluK1 receptor ligand binding and pave the way to the development of new tool compounds for studying kainate receptor function. © 2011 American Chemical Society.
Raminta, V., Butini, S., Sanna Coccone, S., Gemma, S., Brindisi, M., Kumar, V., et al. (2011). Selective Kainate Receptor (GluK1) Ligands Structurally Based upon 1H-Cyclopentapyrimidin-2,4(1H,3H)-dione: Synthesis, Molecular Modeling, and Pharmacological and Biostructural Characterization. JOURNAL OF MEDICINAL CHEMISTRY, 54(13), 4793-4805 [10.1021/jm2004078].
Selective Kainate Receptor (GluK1) Ligands Structurally Based upon 1H-Cyclopentapyrimidin-2,4(1H,3H)-dione: Synthesis, Molecular Modeling, and Pharmacological and Biostructural Characterization
Butini, Stefania;Gemma, Sandra;Maramai, Samuele;Campiani, Giuseppe;
2011-01-01
Abstract
The physiological function of kainate receptors (GluK1-GluK5) in the central nervous system is not fully understood yet. With the aim of developing potent and selective GluK1 ligands, we have synthesized a series of new thiophene-based GluK1 agonists (6a-c) and antagonists (7a-d). Pharmacological evaluation revealed that they are selective for the GluK1 subunit, with 7b being the most subtype-selective ligand reported to date (GluK1 vs GluK3). The antagonist 7a was cocrystallized with the GluK1 ligand binding domain, and an X-ray crystallographic analysis revealed the largest flexibility in GluK1 ligand binding domain opening upon binding of a ligand seen to date. The results provide new insights into the molecular mechanism of GluK1 receptor ligand binding and pave the way to the development of new tool compounds for studying kainate receptor function. © 2011 American Chemical Society.File | Dimensione | Formato | |
---|---|---|---|
jm2004078.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.5 MB
Formato
Adobe PDF
|
3.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/18996
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo