The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s).
Fallerini, C., Picchiotti, N., Baldassarri, M., Zguro, K., Daga, S., Fava, F., et al. (2022). Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity. HUMAN GENETICS, 141(1), 147-173 [10.1007/s00439-021-02397-7].
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
Chiara Fallerini;Margherita Baldassarri;Kristina Zguro;Sergio Daga;Francesca Fava;Elisa Benetti;Sara Amitrano;Mirella Bruttini;Susanna Croci;Giada Beligni;Ilaria Meloni;Marco Tanfoni;Elisa Frullanti;Marco Gori;Francesca Mari;Francesca Montagnani;Mario Tumbarello;Massimiliano Fabbiani;Barbara Rossetti;Laura Bergantini;Miriana D’Alessandro;Paolo Cameli;David Bennett;Sabino Scolletta;Federico Franchi;Maria Antonietta Mazzei;Edoardo Conticini;Elena Bargagli;Lucia VietriMembro del Collaboration Group
;
2022-01-01
Abstract
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s).File | Dimensione | Formato | |
---|---|---|---|
21) Common, low-frequency, rare and ultra-rare coding variants contribute to COVID-19 severity.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
3.93 MB
Formato
Adobe PDF
|
3.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1264395