Cycloguanil is a known dihydrofolate-reductase (DHFR) inhibitor, but there is no evidence of its activity on pteridine reductase (PTR), the main metabolic bypass to DHFR inhibition in trypanosomatid parasites. Here, we provide experimental evidence of cycloguanil as an inhibitor of Trypanosoma brucei PTR1 ( TbPTR1). A small library of cycloguanil derivatives was developed, resulting in 1 and 2a having IC50 values of 692 and 186 nM, respectively, toward TbPTR1. Structural analysis revealed that the increased potency of 1 and 2a is due to the combined contributions of hydrophobic interactions, H-bonds, and halogen bonds. Moreover, in vitro cell-growth-inhibition tests indicated that 2a is also effective on T. brucei. The simultaneous inhibition of DHFR and PTR1 activity in T. brucei is a promising new strategy for the treatment of human African trypanosomiasis. For this purpose, 1,6-dihydrotriazines represent new molecular tools to develop potent dual PTR and DHFR inhibitors.

Landi, G., Linciano, P., Borsari, C., Bertolacini, C.P., Moraes, C.B., Cordeiro-da-Silva, A., et al. (2019). Structural Insights into the Development of Cycloguanil Derivatives as Trypanosoma brucei Pteridine-Reductase-1 Inhibitors. ACS INFECTIOUS DISEASES, 5(7), 1105-1114 [10.1021/acsinfecdis.8b00358].

Structural Insights into the Development of Cycloguanil Derivatives as Trypanosoma brucei Pteridine-Reductase-1 Inhibitors

Landi, Giacomo;Costi, Maria Paola;Pozzi, Cecilia
;
Mangani, Stefano
2019-01-01

Abstract

Cycloguanil is a known dihydrofolate-reductase (DHFR) inhibitor, but there is no evidence of its activity on pteridine reductase (PTR), the main metabolic bypass to DHFR inhibition in trypanosomatid parasites. Here, we provide experimental evidence of cycloguanil as an inhibitor of Trypanosoma brucei PTR1 ( TbPTR1). A small library of cycloguanil derivatives was developed, resulting in 1 and 2a having IC50 values of 692 and 186 nM, respectively, toward TbPTR1. Structural analysis revealed that the increased potency of 1 and 2a is due to the combined contributions of hydrophobic interactions, H-bonds, and halogen bonds. Moreover, in vitro cell-growth-inhibition tests indicated that 2a is also effective on T. brucei. The simultaneous inhibition of DHFR and PTR1 activity in T. brucei is a promising new strategy for the treatment of human African trypanosomiasis. For this purpose, 1,6-dihydrotriazines represent new molecular tools to develop potent dual PTR and DHFR inhibitors.
2019
Landi, G., Linciano, P., Borsari, C., Bertolacini, C.P., Moraes, C.B., Cordeiro-da-Silva, A., et al. (2019). Structural Insights into the Development of Cycloguanil Derivatives as Trypanosoma brucei Pteridine-Reductase-1 Inhibitors. ACS INFECTIOUS DISEASES, 5(7), 1105-1114 [10.1021/acsinfecdis.8b00358].
File in questo prodotto:
File Dimensione Formato  
2019 ACS Infect Dis TbPTR1 ASAP.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1072479