The development of wearable robotic exoskeletons has seen rapid progress in recent years, driven by the growing need for technologies that support motor rehabilitation, assist individuals with physical impairments, and enhance human capabilities in both clinical and everyday contexts. Within this field, elbow exoskeletons have emerged as a key focus due to the joint’s essential role in upper limb functionality and its frequent impairment following neurological injuries such as stroke. With increasing research activity, there is a strong interest in evaluating these systems not only from a technical perspective but also in terms of user comfort, adaptability, and clinical relevance. This review investigates recent advancements in elbow exoskeleton technology, evaluating their effectiveness and identifying key design challenges and limitations. Devices are categorized based on three main criteria: mechanical structure (rigid, soft, or hybrid), actuation method, and sensing technologies. Additionally, the review classifies systems by their supported range of motion, flexion–extension, supination–pronation, or both. Through a systematic analysis of these features, the paper highlights current design trends, common trade-offs, and research gaps, aiming to guide the development of more practical, effective, and accessible elbow exoskeletons.

Supriyono, C.S.A., Dragusanu, M., Malvezzi, M. (2025). A Comprehensive Review of Elbow Exoskeletons: Classification by Structure, Actuation, and Sensing Technologies. SENSORS, 25(14) [10.3390/s25144263].

A Comprehensive Review of Elbow Exoskeletons: Classification by Structure, Actuation, and Sensing Technologies

Dragusanu, Mihai
;
Malvezzi, Monica
2025-01-01

Abstract

The development of wearable robotic exoskeletons has seen rapid progress in recent years, driven by the growing need for technologies that support motor rehabilitation, assist individuals with physical impairments, and enhance human capabilities in both clinical and everyday contexts. Within this field, elbow exoskeletons have emerged as a key focus due to the joint’s essential role in upper limb functionality and its frequent impairment following neurological injuries such as stroke. With increasing research activity, there is a strong interest in evaluating these systems not only from a technical perspective but also in terms of user comfort, adaptability, and clinical relevance. This review investigates recent advancements in elbow exoskeleton technology, evaluating their effectiveness and identifying key design challenges and limitations. Devices are categorized based on three main criteria: mechanical structure (rigid, soft, or hybrid), actuation method, and sensing technologies. Additionally, the review classifies systems by their supported range of motion, flexion–extension, supination–pronation, or both. Through a systematic analysis of these features, the paper highlights current design trends, common trade-offs, and research gaps, aiming to guide the development of more practical, effective, and accessible elbow exoskeletons.
2025
Supriyono, C.S.A., Dragusanu, M., Malvezzi, M. (2025). A Comprehensive Review of Elbow Exoskeletons: Classification by Structure, Actuation, and Sensing Technologies. SENSORS, 25(14) [10.3390/s25144263].
File in questo prodotto:
File Dimensione Formato  
sensors-25-04263-v2.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1301757