Picornaviridae are positive-sense single stranded RNA viruses with a similar genomic structure lacking a cap at the 5' end, but with a highly structured 5'-untranslated region (UTR) containing an internal ribosome entry site (IRES). IRES allows ribosomes to be recruited by the viral RNA and initiate translation in a cap-independent manner. Coxsackie virus type B (CV-B) belong to Picornaviridae and are widespread in human population. They usually cause subclinical infections but, occasionally, also severe diseases with various clinical manifestations. CV-B have no specific therapy. DEAD-box polypeptide 3 (DDX3) is a member of the Asp-Glu-Ala-Asp (DEAD)-box family with an ATP-dependent RNA unwinding helicase activity. Recently, several positive-sense single strand RNA viruses have been shown to need DDX3 for their translation. Here, we show that several DDX3 inhibitors reduced CV-B replication and production of viral protein, particularly when added within 12 h of infection. Based on in vitro and in silico data, we hypothesized that DDX3 inhibitors hamper interaction between DDX3 and viral IRES in a stereodynamic fashion. Accordingly, the DDX3 inhibitors tested have no activity against the Vesicular Stomatitis virus and Measles virus, which are negative-sense single stranded RNA viruses and use cap-dependent translation. This study suggests that DDX3 is required by RNA viruses lacking a cap and show that this enzyme is a valuable target to design antiviral molecules against CV-B. Thus, DDX3 is dispensable for cap-dependent translation, but required for translation of transcripts containing secondary structure in their UTRs.
Quaranta, P., Lottini, G., Chesi, G., Contrafatto, F., Russotto, R., Macera, L., et al. (2020). DDX3 inhibitors show antiviral activity against positive-sense single-stranded RNA viruses but not against negative-sense single-stranded RNA viruses: The coxsackie B model. ANTIVIRAL RESEARCH, 178 [10.1016/j.antiviral.2020.104750].
DDX3 inhibitors show antiviral activity against positive-sense single-stranded RNA viruses but not against negative-sense single-stranded RNA viruses: The coxsackie B model
Lottini, Giulia;Brai, Annalaura;Botta, Maurizio;Freer, Giulia;Pistello, Mauro
2020-01-01
Abstract
Picornaviridae are positive-sense single stranded RNA viruses with a similar genomic structure lacking a cap at the 5' end, but with a highly structured 5'-untranslated region (UTR) containing an internal ribosome entry site (IRES). IRES allows ribosomes to be recruited by the viral RNA and initiate translation in a cap-independent manner. Coxsackie virus type B (CV-B) belong to Picornaviridae and are widespread in human population. They usually cause subclinical infections but, occasionally, also severe diseases with various clinical manifestations. CV-B have no specific therapy. DEAD-box polypeptide 3 (DDX3) is a member of the Asp-Glu-Ala-Asp (DEAD)-box family with an ATP-dependent RNA unwinding helicase activity. Recently, several positive-sense single strand RNA viruses have been shown to need DDX3 for their translation. Here, we show that several DDX3 inhibitors reduced CV-B replication and production of viral protein, particularly when added within 12 h of infection. Based on in vitro and in silico data, we hypothesized that DDX3 inhibitors hamper interaction between DDX3 and viral IRES in a stereodynamic fashion. Accordingly, the DDX3 inhibitors tested have no activity against the Vesicular Stomatitis virus and Measles virus, which are negative-sense single stranded RNA viruses and use cap-dependent translation. This study suggests that DDX3 is required by RNA viruses lacking a cap and show that this enzyme is a valuable target to design antiviral molecules against CV-B. Thus, DDX3 is dispensable for cap-dependent translation, but required for translation of transcripts containing secondary structure in their UTRs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1286076