The design of compounds able to combine the selective inhibition of cyclooxygenase-2 (COX-2) with the release of nitric oxide (NO) is a promising strategy to achieve potent anti-inflammatory agents endowed with an overall safer profile and reduced toxicity upon gastrointestinal and cardiovascular systems. With the aim of generating novel and selective COX-2 inhibiting NO-donors (CINOD) and encouraged by the promising results obtained with our nitrooxy- and hydroxyethyl ethers 11 and 12 reported in previous works, we shifted our attention on the synthesis of isosteric thioanalogs nitrooxy- and hydroxy ethyl sulfides 13a-c and 14a-c, respectively, along with their oxidation products nitrooxy- and hydroxyethyl sulfoxides 15a-c and 16a-c, respectively, also referred to as thio-CINOD. Preliminary data and metabolic analysis highlighted how the isosteric substitution of the ethereal oxygen atom of 11a-c with sulfur in compounds 13a-c, independently from the presence and the number of fluorine atoms in N1-phenyl ring, leads to new selective and highly potent COX-2 inhibitors, capable to induce vasorelaxant responses in vivo. The same behavior is observed with their oxidized counterparts nitrooxyethyl sulfoxides 15a-c, in which the oxidation state of the sulfur atom and the presence of the additional oxygen atom play a substantial role in enhancing compounds activity and vasorelaxation. In addition, the screened compounds proved significantly efficacious in mouse models of inflammation and nociception at the dose of 20 mg/kg.

Saletti, M., Maramai, S., Reale, A., Paolino, M., Brogi, S., Di Capua, A., et al. (2022). Novel analgesic/anti-inflammatory agents: 1,5-Diarylpyrrole nitrooxyethyl sulfides and related compounds as Cyclooxygenase-2 inhibitors containing a nitric oxide donor moiety endowed with vasorelaxant properties. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 241, 114615 [10.1016/j.ejmech.2022.114615].

Novel analgesic/anti-inflammatory agents: 1,5-Diarylpyrrole nitrooxyethyl sulfides and related compounds as Cyclooxygenase-2 inhibitors containing a nitric oxide donor moiety endowed with vasorelaxant properties

Saletti, Mario;Maramai, Samuele;Reale, Annalisa;Paolino, Marco;Brogi, Simone;Di Capua, Angela;Cappelli, Andrea;Giorgi, Gianluca;Anzini, Maurizio
2022-01-01

Abstract

The design of compounds able to combine the selective inhibition of cyclooxygenase-2 (COX-2) with the release of nitric oxide (NO) is a promising strategy to achieve potent anti-inflammatory agents endowed with an overall safer profile and reduced toxicity upon gastrointestinal and cardiovascular systems. With the aim of generating novel and selective COX-2 inhibiting NO-donors (CINOD) and encouraged by the promising results obtained with our nitrooxy- and hydroxyethyl ethers 11 and 12 reported in previous works, we shifted our attention on the synthesis of isosteric thioanalogs nitrooxy- and hydroxy ethyl sulfides 13a-c and 14a-c, respectively, along with their oxidation products nitrooxy- and hydroxyethyl sulfoxides 15a-c and 16a-c, respectively, also referred to as thio-CINOD. Preliminary data and metabolic analysis highlighted how the isosteric substitution of the ethereal oxygen atom of 11a-c with sulfur in compounds 13a-c, independently from the presence and the number of fluorine atoms in N1-phenyl ring, leads to new selective and highly potent COX-2 inhibitors, capable to induce vasorelaxant responses in vivo. The same behavior is observed with their oxidized counterparts nitrooxyethyl sulfoxides 15a-c, in which the oxidation state of the sulfur atom and the presence of the additional oxygen atom play a substantial role in enhancing compounds activity and vasorelaxation. In addition, the screened compounds proved significantly efficacious in mouse models of inflammation and nociception at the dose of 20 mg/kg.
Saletti, M., Maramai, S., Reale, A., Paolino, M., Brogi, S., Di Capua, A., et al. (2022). Novel analgesic/anti-inflammatory agents: 1,5-Diarylpyrrole nitrooxyethyl sulfides and related compounds as Cyclooxygenase-2 inhibitors containing a nitric oxide donor moiety endowed with vasorelaxant properties. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 241, 114615 [10.1016/j.ejmech.2022.114615].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1215278
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo