Aim: Over the years, indole has proved to be a versatile scaffold for the design of molecules acting as anti-inflammatory agents. Materials & Methods: A small library of 3-amino-alkylated indoles has been obtained by an optimized Mannich green approach. The anti-inflammatory activity of the new 3-amino-alkylated indoles, GLYC 0-10, was evaluated in RAW 264.7 macrophages. Results: The anti-inflammatory activity of the new 3-amino-alkylated indoles, GLYC 0-10, was evaluatedn and, among them, GLYC 4, 5 and 9 displayed the greatest inhibitory effects on nitric oxide production, with IC50 values of 5.41, 4.22 and 6.3 μM, respectively. Conclusion: Our outcomes, overall, highlight the importance of the indole substitution in the anti-inflammatory activity of these compounds, exerted by acting on the interlinked NF-κB/ERK1/2 pathways.
Mazzotta, S., Frattaruolo, L., Brindisi, M., Ulivieri, C., Vanni, F., Brizzi, A., et al. (2019). 3-Amino-alkylated indoles: Unexplored green products acting as anti-inflammatory agents. FUTURE MEDICINAL CHEMISTRY, 12(1), 5-17 [10.4155/fmc-2019-0234].
3-Amino-alkylated indoles: Unexplored green products acting as anti-inflammatory agents
Ulivieri C.;Vanni F.;Brizzi A.;Carullo G.
;
2019-01-01
Abstract
Aim: Over the years, indole has proved to be a versatile scaffold for the design of molecules acting as anti-inflammatory agents. Materials & Methods: A small library of 3-amino-alkylated indoles has been obtained by an optimized Mannich green approach. The anti-inflammatory activity of the new 3-amino-alkylated indoles, GLYC 0-10, was evaluated in RAW 264.7 macrophages. Results: The anti-inflammatory activity of the new 3-amino-alkylated indoles, GLYC 0-10, was evaluatedn and, among them, GLYC 4, 5 and 9 displayed the greatest inhibitory effects on nitric oxide production, with IC50 values of 5.41, 4.22 and 6.3 μM, respectively. Conclusion: Our outcomes, overall, highlight the importance of the indole substitution in the anti-inflammatory activity of these compounds, exerted by acting on the interlinked NF-κB/ERK1/2 pathways.File | Dimensione | Formato | |
---|---|---|---|
FutureMedChem2019.pdf
non disponibili
Descrizione: Post-print
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1107432