Increasing presence is one of the primary goals of virtual reality research. A crucial aspect is that users are capable of distinguishing their self from the external virtual world. The hypothesis we investigate is that wearable haptics play an important role in the body experience and could thereby contribute to the immersion of the user in the virtual environment. A within-subject study (n=32) comparing the embodiment of a virtual hand with different implementations of haptic feedback (force feedback, vibrotactile feedback, and no haptic feedback) is presented. Participants wore a glove with haptic feedback devices at thumb and index finger. They were asked to put virtual cubes on a moving virtual target. Touching a virtual object caused vibrotactile-feedback, force-feedback or no feedback depending on the condition. These conditions were provided both synchronously and asynchronously. Embodiment was assessed quantitatively with the proprioceptive drift and subjectively via a questionnaire. Results show that haptic feedback significantly improves the subjective embodiment of a virtual hand and that force feedback leads to stronger responses to certain subscales of subjective embodiment. These outcomes are useful guidelines for wearable haptic designer and represent a basis for further research concerning human body experience, in reality, and in virtual environments.
Frohner, J., Salvietti, G., Beckerle, P., Prattichizzo, D. (2019). Can wearable haptic devices foster the embodiment of virtual limbs?. IEEE TRANSACTIONS ON HAPTICS, 12(3), 339-349 [10.1109/TOH.2018.2889497].
Can wearable haptic devices foster the embodiment of virtual limbs?
G. Salvietti;D. Prattichizzo
2019-01-01
Abstract
Increasing presence is one of the primary goals of virtual reality research. A crucial aspect is that users are capable of distinguishing their self from the external virtual world. The hypothesis we investigate is that wearable haptics play an important role in the body experience and could thereby contribute to the immersion of the user in the virtual environment. A within-subject study (n=32) comparing the embodiment of a virtual hand with different implementations of haptic feedback (force feedback, vibrotactile feedback, and no haptic feedback) is presented. Participants wore a glove with haptic feedback devices at thumb and index finger. They were asked to put virtual cubes on a moving virtual target. Touching a virtual object caused vibrotactile-feedback, force-feedback or no feedback depending on the condition. These conditions were provided both synchronously and asynchronously. Embodiment was assessed quantitatively with the proprioceptive drift and subjectively via a questionnaire. Results show that haptic feedback significantly improves the subjective embodiment of a virtual hand and that force feedback leads to stronger responses to certain subscales of subjective embodiment. These outcomes are useful guidelines for wearable haptic designer and represent a basis for further research concerning human body experience, in reality, and in virtual environments.File | Dimensione | Formato | |
---|---|---|---|
IEEE ToH19.pdf
accesso aperto
Descrizione: Accepted version. European Union (EU), Horizon 2020 programme. European project “Synergy-based Open-source Foundations and Technologies for Prosthetics and RehabilitatiOn” (SoftPro), Research and innovation actions, Grant Agreement n. 688857. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Digital Object Identifier (DOI): 10.1109/TOH.2018.2889497
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
6.42 MB
Formato
Adobe PDF
|
6.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1067210