This paper presents a new technique for online set membership parameter estimation of linear regression models affected by unknown-but-bounded noise. An orthotopic approximation of the set of feasible parameters is updated at each time step. The proposed technique relies on the solution of a suitable linear program, whenever a new measurement leads to a reduction of the approximating orthotope. The key idea for preventing the size of the linear programs from steadily increasing is to propagate only the binding constraints of these optimization problems. Numerical studies show that the new approach outperforms existing recursive set approximation techniques, while keeping the required computational burden within the same order of magnitude.

Casini, M., Garulli, A., Vicino, A. (2017). A linear programming approach to online set membership parameter estimation for linear regression models. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 31(3), 360-378 [10.1002/acs.2701].

A linear programming approach to online set membership parameter estimation for linear regression models

Casini, Marco
;
Garulli, Andrea;Vicino, Antonio
2017-01-01

Abstract

This paper presents a new technique for online set membership parameter estimation of linear regression models affected by unknown-but-bounded noise. An orthotopic approximation of the set of feasible parameters is updated at each time step. The proposed technique relies on the solution of a suitable linear program, whenever a new measurement leads to a reduction of the approximating orthotope. The key idea for preventing the size of the linear programs from steadily increasing is to propagate only the binding constraints of these optimization problems. Numerical studies show that the new approach outperforms existing recursive set approximation techniques, while keeping the required computational burden within the same order of magnitude.
2017
Casini, M., Garulli, A., Vicino, A. (2017). A linear programming approach to online set membership parameter estimation for linear regression models. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 31(3), 360-378 [10.1002/acs.2701].
File in questo prodotto:
File Dimensione Formato  
IJACSP17_Final.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.67 MB
Formato Adobe PDF
3.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Paper_IJACSP_postprint.pdf

accesso aperto

Descrizione: INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING Int. J. Adapt. Control Signal Process. 2017; 31:360–378 Published online 11 July 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/acs.2701
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 990.5 kB
Formato Adobe PDF
990.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/997217