This paper presents a new technique for online set membership parameter estimation of linear regression models affected by unknown-but-bounded noise. An orthotopic approximation of the set of feasible parameters is updated at each time step. The proposed technique relies on the solution of a suitable linear program, whenever a new measurement leads to a reduction of the approximating orthotope. The key idea for preventing the size of the linear programs from steadily increasing is to propagate only the binding constraints of these optimization problems. Numerical studies show that the new approach outperforms existing recursive set approximation techniques, while keeping the required computational burden within the same order of magnitude.
Casini, M., Garulli, A., Vicino, A. (2017). A linear programming approach to online set membership parameter estimation for linear regression models. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 31(3), 360-378 [10.1002/acs.2701].
A linear programming approach to online set membership parameter estimation for linear regression models
Casini, Marco
;Garulli, Andrea;Vicino, Antonio
2017-01-01
Abstract
This paper presents a new technique for online set membership parameter estimation of linear regression models affected by unknown-but-bounded noise. An orthotopic approximation of the set of feasible parameters is updated at each time step. The proposed technique relies on the solution of a suitable linear program, whenever a new measurement leads to a reduction of the approximating orthotope. The key idea for preventing the size of the linear programs from steadily increasing is to propagate only the binding constraints of these optimization problems. Numerical studies show that the new approach outperforms existing recursive set approximation techniques, while keeping the required computational burden within the same order of magnitude.File | Dimensione | Formato | |
---|---|---|---|
IJACSP17_Final.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.67 MB
Formato
Adobe PDF
|
3.67 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Paper_IJACSP_postprint.pdf
accesso aperto
Descrizione: INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING Int. J. Adapt. Control Signal Process. 2017; 31:360–378 Published online 11 July 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/acs.2701
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
990.5 kB
Formato
Adobe PDF
|
990.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/997217