Using properties of κ-pairs of sets, we show that every nonzero enumeration degree a bounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump as a. Some consequences of this fact are derived, that hold in the local structure of the enumeration degrees, including: There is an initial segment of enumeration degrees, whose nonzero elements are all high; there is a nonsplitting high enumeration degree; every noncappable enumeration degree is high; every nonzero low enumeration degree can be capped by degrees of any possible local jump (i.e., any jump that can be realized by enumeration degrees of the local structure); every enumeration degree that bounds a nonzero element of strictly smaller jump, is bounding; every low enumeration degree below a non low enumeration degree a can be capped below a.

Ganchev, H., Sorbi, A. (2016). Initial segments of the Σ0 2 enumeration degrees. THE JOURNAL OF SYMBOLIC LOGIC, 81(1), 316-325 [10.1017/jsl.2014.84].

Initial segments of the Σ0 2 enumeration degrees

Sorbi, Andrea
2016-01-01

Abstract

Using properties of κ-pairs of sets, we show that every nonzero enumeration degree a bounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump as a. Some consequences of this fact are derived, that hold in the local structure of the enumeration degrees, including: There is an initial segment of enumeration degrees, whose nonzero elements are all high; there is a nonsplitting high enumeration degree; every noncappable enumeration degree is high; every nonzero low enumeration degree can be capped by degrees of any possible local jump (i.e., any jump that can be realized by enumeration degrees of the local structure); every enumeration degree that bounds a nonzero element of strictly smaller jump, is bounding; every low enumeration degree below a non low enumeration degree a can be capped below a.
2016
Ganchev, H., Sorbi, A. (2016). Initial segments of the Σ0 2 enumeration degrees. THE JOURNAL OF SYMBOLIC LOGIC, 81(1), 316-325 [10.1017/jsl.2014.84].
File in questo prodotto:
File Dimensione Formato  
initial_segments_of_the_sigma-0-2_enumeration_degrees.pdf

non disponibili

Descrizione: Articolo unico
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 153.07 kB
Formato Adobe PDF
153.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
initial-segments-post.pdf

accesso aperto

Descrizione: GANCHEV, H., & SORBI, A. (2016). INITIAL SEGMENTS OF THE ${rm{Sigma }}_2^0 $ ENUMERATION DEGREES. The Journal of Symbolic Logic, 81(1), 316-325. doi:10.1017/jsl.2014.84
Tipologia: Post-print
Licenza: Creative commons
Dimensione 284.28 kB
Formato Adobe PDF
284.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/990168