The carbazole alkaloid murrayafoline A (MuA) enhances contractility and the Ca(2+) currents carried by the Cav 1.2 channels [ICa1.2 ] of rat cardiomyocytes. As only few drugs stimulate ICa1.2 , this study was designed to analyse the effects of MuA on vascular Cav 1.2 channels. Vascular activity was assessed on rat aorta rings mounted in organ baths. Cav 1.2 Ba(2+) current [IBa1.2 ] was recorded in single rat aorta and tail artery myocytes by the patch-clamp technique. Docking at a 3D model of the rat, α1c central pore subunit of the Cav 1.2 channel was simulated in silico. In rat aorta rings MuA, at concentrations ≤14.2 μM, increased 30 mM K(+) -induced tone and shifted the concentration-response curve to K(+) to the left. Conversely, at concentrations >14.2 μM, it relaxed high K(+) depolarized rings and antagonized Bay K 8644-induced contraction. In single myocytes, MuA stimulated IBa1.2 in a concentration-dependent, bell-shaped manner; stimulation was stable, incompletely reversible upon drug washout and accompanied by a leftward shift of the voltage-dependent activation curve. MuA docked at the α1C subunit central pore differently from nifedipine and Bay K 8644, although apparently interacting with the same amino acids of the pocket. Neither Bay K 8644-induced stimulation nor nifedipine-induced block of IBa1.2 was modified by MuA. Murrayafoline A is a naturally occurring vasoactive agent able to modulate Cav 1.2 channels and dock at the α1C subunit central pore in a manner that differed from that of dihydropyridines.
Saponara, S., Durante, M., Spiga, O., Mugnai, P., Sgaragli, G.P., Huong, T.T., et al. (2016). Functional, electrophysiological and molecular docking analysis of the modulation of Cav 1.2 channels in rat vascular myocytes by murrayafoline A. BRITISH JOURNAL OF PHARMACOLOGY, 173(2), 292-304 [10.1111/bph.13369].
Functional, electrophysiological and molecular docking analysis of the modulation of Cav 1.2 channels in rat vascular myocytes by murrayafoline A
SAPONARA, SIMONA;DURANTE, MIRIAM;SPIGA, OTTAVIA;MUGNAI, PAOLO;SGARAGLI, GIAN PIETRO;FUSI, FABIO
2016-01-01
Abstract
The carbazole alkaloid murrayafoline A (MuA) enhances contractility and the Ca(2+) currents carried by the Cav 1.2 channels [ICa1.2 ] of rat cardiomyocytes. As only few drugs stimulate ICa1.2 , this study was designed to analyse the effects of MuA on vascular Cav 1.2 channels. Vascular activity was assessed on rat aorta rings mounted in organ baths. Cav 1.2 Ba(2+) current [IBa1.2 ] was recorded in single rat aorta and tail artery myocytes by the patch-clamp technique. Docking at a 3D model of the rat, α1c central pore subunit of the Cav 1.2 channel was simulated in silico. In rat aorta rings MuA, at concentrations ≤14.2 μM, increased 30 mM K(+) -induced tone and shifted the concentration-response curve to K(+) to the left. Conversely, at concentrations >14.2 μM, it relaxed high K(+) depolarized rings and antagonized Bay K 8644-induced contraction. In single myocytes, MuA stimulated IBa1.2 in a concentration-dependent, bell-shaped manner; stimulation was stable, incompletely reversible upon drug washout and accompanied by a leftward shift of the voltage-dependent activation curve. MuA docked at the α1C subunit central pore differently from nifedipine and Bay K 8644, although apparently interacting with the same amino acids of the pocket. Neither Bay K 8644-induced stimulation nor nifedipine-induced block of IBa1.2 was modified by MuA. Murrayafoline A is a naturally occurring vasoactive agent able to modulate Cav 1.2 channels and dock at the α1C subunit central pore in a manner that differed from that of dihydropyridines.File | Dimensione | Formato | |
---|---|---|---|
2016 VIP70 aorta e rat tail BJP.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.9 MB
Formato
Adobe PDF
|
1.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
FUSI FABIO-Functional electrophysiological-PrePrint.pdf
accesso aperto
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
415.79 kB
Formato
Adobe PDF
|
415.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/983876