The 5-amino-1,2,3-triazole-4-carboxylic acid is a suitable molecule for the preparation of collections of peptidomimetics or biologically active compounds based on the triazole scaffold. However, its chemistry may be influenced by the possibility of undergoing the Dimroth rearrangement. To overcome this problem, a protocol based on the ruthenium-catalyzed cycloaddition of N-Boc ynamides with azides has been developed to give a protected version of this triazole amino acid. When aryl or alkyl azides are reacted with N-Boc-aminopropiolates or arylynamides, the cycloaddition occurs with complete regiocontrol, while N-Boc-alkyl ynamides yield a mixture of regioisomers. The prepared amino acids were employed for the preparation of triazole-containing dipeptides having the structural motives typical of turn inducers. In addition, triazoles active as HSP90 inhibitors (as compound 41, IC50 = 29 nM) were synthesized.

Ferrini, S., Chandanshive, J.Z., Lena, S., Franchini, M.C., Giannini, G., Tafi, A., et al. (2015). Ruthenium-catalyzed synthesis of 5-amino-1,2,3-triazole-4-carboxylates for triazole-based scaffolds: Beyond the Dimroth rearrangement. JOURNAL OF ORGANIC CHEMISTRY, 80(5), 2562-2572 [10.1021/jo502577e].

Ruthenium-catalyzed synthesis of 5-amino-1,2,3-triazole-4-carboxylates for triazole-based scaffolds: Beyond the Dimroth rearrangement

Ferrini, Serena;Giannini, Giuseppe;Tafi, Andrea;Taddei, Maurizio
2015

Abstract

The 5-amino-1,2,3-triazole-4-carboxylic acid is a suitable molecule for the preparation of collections of peptidomimetics or biologically active compounds based on the triazole scaffold. However, its chemistry may be influenced by the possibility of undergoing the Dimroth rearrangement. To overcome this problem, a protocol based on the ruthenium-catalyzed cycloaddition of N-Boc ynamides with azides has been developed to give a protected version of this triazole amino acid. When aryl or alkyl azides are reacted with N-Boc-aminopropiolates or arylynamides, the cycloaddition occurs with complete regiocontrol, while N-Boc-alkyl ynamides yield a mixture of regioisomers. The prepared amino acids were employed for the preparation of triazole-containing dipeptides having the structural motives typical of turn inducers. In addition, triazoles active as HSP90 inhibitors (as compound 41, IC50 = 29 nM) were synthesized.
Ferrini, S., Chandanshive, J.Z., Lena, S., Franchini, M.C., Giannini, G., Tafi, A., et al. (2015). Ruthenium-catalyzed synthesis of 5-amino-1,2,3-triazole-4-carboxylates for triazole-based scaffolds: Beyond the Dimroth rearrangement. JOURNAL OF ORGANIC CHEMISTRY, 80(5), 2562-2572 [10.1021/jo502577e].
File in questo prodotto:
File Dimensione Formato  
Ruthenium.pdf

accesso aperto

Descrizione: Ruthenium
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 907.68 kB
Formato Adobe PDF
907.68 kB Adobe PDF Visualizza/Apri
jo502577e.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/982107