The aim of present study was to investigate the influence of titanium dioxide nanoparticles (nano-TiO2, Aeroxide® P25) on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) dependent biotransformation gene expression in liver of juvenile European sea bass Dicentrarchus labrax. An in vivo 7 day waterborne exposure was performed with nano-TiO2 (1 mg/L) and 2,3,7,8-TCDD (46 pg/L), singly and in combination. The mRNA expression of aryl hydrocarbon receptor repressor (Ahrr), estrogen receptor (erβ2), ABC transport proteins as Abcb1, Abcc1-c2-g2, cytochrome P450 (cyp1a), glutathione-s-transferase (gsta), glutathione reductase (gr) and engulfment and motility (ELMO) domain-containing protein 2 (elmod2) was investigated. Ahrr, erβ2, abcc1 and abcg2 resulted down-regulated with respect to controls in all experimental groups. Co-exposure to nano-TiO2 and 2,3,7,8- TCDD caused a further significant down regulation of ahrr, erβ2, Abcb1 and Abcc2 compared to single chemical exposure (nano-TiO2 or 2,3,7,8-TCDD alone). No effects were observed for 2,3,7,8-TCDD and nano-TiO2 alone in abcb1 gene, while abcc2 was down-regulated by nano-TiO2 alone. Cyp1a, gst and elmod2 genes were upregulated by 2,3,7,8-TCDD and to a similar extent after co-exposure. Overall the results indicate that nano-TiO2 is unlikely to interfere with 2,3,7,8-TCDD-dependent biotransformation gene expression in the liver of European sea bass, although the effects of co-exposure observed in ABC transport mRNAs might suggest an impact on xenobiotic metabolite disposition and transport in European sea bass liver.

Vannuccini, M.L., Grassi, G., Leaver, M.J., Corsi, I. (2015). Combination effects of nano-TiO2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C. TOXICOLOGY & PHARMACOLOGY, 176-177, 71-78 [10.1016/j.cbpc.2015.07.009].

Combination effects of nano-TiO2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax

Vannuccini, Maria Luisa;Grassi, Giacomo;Corsi, Ilaria
2015-01-01

Abstract

The aim of present study was to investigate the influence of titanium dioxide nanoparticles (nano-TiO2, Aeroxide® P25) on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) dependent biotransformation gene expression in liver of juvenile European sea bass Dicentrarchus labrax. An in vivo 7 day waterborne exposure was performed with nano-TiO2 (1 mg/L) and 2,3,7,8-TCDD (46 pg/L), singly and in combination. The mRNA expression of aryl hydrocarbon receptor repressor (Ahrr), estrogen receptor (erβ2), ABC transport proteins as Abcb1, Abcc1-c2-g2, cytochrome P450 (cyp1a), glutathione-s-transferase (gsta), glutathione reductase (gr) and engulfment and motility (ELMO) domain-containing protein 2 (elmod2) was investigated. Ahrr, erβ2, abcc1 and abcg2 resulted down-regulated with respect to controls in all experimental groups. Co-exposure to nano-TiO2 and 2,3,7,8- TCDD caused a further significant down regulation of ahrr, erβ2, Abcb1 and Abcc2 compared to single chemical exposure (nano-TiO2 or 2,3,7,8-TCDD alone). No effects were observed for 2,3,7,8-TCDD and nano-TiO2 alone in abcb1 gene, while abcc2 was down-regulated by nano-TiO2 alone. Cyp1a, gst and elmod2 genes were upregulated by 2,3,7,8-TCDD and to a similar extent after co-exposure. Overall the results indicate that nano-TiO2 is unlikely to interfere with 2,3,7,8-TCDD-dependent biotransformation gene expression in the liver of European sea bass, although the effects of co-exposure observed in ABC transport mRNAs might suggest an impact on xenobiotic metabolite disposition and transport in European sea bass liver.
2015
Vannuccini, M.L., Grassi, G., Leaver, M.J., Corsi, I. (2015). Combination effects of nano-TiO2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C. TOXICOLOGY & PHARMACOLOGY, 176-177, 71-78 [10.1016/j.cbpc.2015.07.009].
File in questo prodotto:
File Dimensione Formato  
corsi6.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 620.3 kB
Formato Adobe PDF
620.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/982096