We prove a Critical Point Theorem for C1 functionals on the unit sphere of a separable Hilbert space H which improves a previous result of ours. This is applied in nonlinear eigenvalue theory to study the effect of suitably restricted homogeneous perturbations upon the discrete spectrum of a bounded self-adjoint operator in H.

Chiappinelli, R. (2006). Nonlinear homogeneous perturbation of the discrete spectrum of a self-adjoint operator and a new Constrained Saddle Point Theorem. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 318, 323-332.

Nonlinear homogeneous perturbation of the discrete spectrum of a self-adjoint operator and a new Constrained Saddle Point Theorem

CHIAPPINELLI, RAFFAELE
2006

Abstract

We prove a Critical Point Theorem for C1 functionals on the unit sphere of a separable Hilbert space H which improves a previous result of ours. This is applied in nonlinear eigenvalue theory to study the effect of suitably restricted homogeneous perturbations upon the discrete spectrum of a bounded self-adjoint operator in H.
File in questo prodotto:
File Dimensione Formato  
76147_UPLOAD.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 122.99 kB
Formato Adobe PDF
122.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/6593
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo