The aim of the present study was to characterize voltage-gated Ca2+ currents in smooth muscle cells freshly isolated from rat tail main artery in the presence of 5 mmol L(-1) external Ca2+. Calcium currents were identified on the basis of their voltage dependencies and sensitivity to nifedipine, Ni2+ and cinnarizine. In the majority of the cells studied, T- and L-type currents were observed, while the remaining cells showed predominantly L-type currents. In the latter group of cells, holding potential change from -50 to either -70 or -90 mV increased the corresponding inward current amplitude while its voltage activation threshold remained unchanged. The steady state inactivation of L-type Ca2+ channels showed half-maximal inactivation at -38 mV. A Ca2+-dependent inactivation was also evident. Nifedipine (3 micromol L(-1)) blocked L-type but not T-type Ca2+ currents. Ni2+ (50 micromol L(-1)) as well as cinnarizine (1 micromol L(-1)) suppressed the nifedipine-resistant, T-type component of the currents. At higher concentrations, both Ni2+ (0.3-1 mmol L(-1)) and cinnarizine (10 micromol L(-1)) blocked the net inward current. Replacement of Ca2+ with 10 mmol L(-)1 Ba2+ significantly increased the amplitude of L-type Ca2+ currents. These results demonstrate that smooth muscle cells freshly isolated from rat tail main artery may be divided into two populations, one expressing both L- and T-type and the other only L-type Ca2+ channels. Furthermore, this report shows that in arterial smooth muscle cells cinnarizine potently inhibited T-type currents at low concentrations (1 micromol L(-1)) but also blocked L-type Ca2+ currents at higher concentrations (10 micromol L(-1)).

Petkov G., V., Fusi, F., Saponara, S., Gagov, H., Sgaragli, G.P., Boev, K.K. (2001). Characterization of voltage-gated calcium currents in freshly isolated smooth muscle cells from rat tail main artery. ACTA PHYSIOLOGICA SCANDINAVICA, 173(3), 257-265 [10.1046/j.1365-201X.2001.00907.x].

Characterization of voltage-gated calcium currents in freshly isolated smooth muscle cells from rat tail main artery

Fusi, Fabio;Saponara, Simona;Sgaragli, Gian Pietro;
2001-01-01

Abstract

The aim of the present study was to characterize voltage-gated Ca2+ currents in smooth muscle cells freshly isolated from rat tail main artery in the presence of 5 mmol L(-1) external Ca2+. Calcium currents were identified on the basis of their voltage dependencies and sensitivity to nifedipine, Ni2+ and cinnarizine. In the majority of the cells studied, T- and L-type currents were observed, while the remaining cells showed predominantly L-type currents. In the latter group of cells, holding potential change from -50 to either -70 or -90 mV increased the corresponding inward current amplitude while its voltage activation threshold remained unchanged. The steady state inactivation of L-type Ca2+ channels showed half-maximal inactivation at -38 mV. A Ca2+-dependent inactivation was also evident. Nifedipine (3 micromol L(-1)) blocked L-type but not T-type Ca2+ currents. Ni2+ (50 micromol L(-1)) as well as cinnarizine (1 micromol L(-1)) suppressed the nifedipine-resistant, T-type component of the currents. At higher concentrations, both Ni2+ (0.3-1 mmol L(-1)) and cinnarizine (10 micromol L(-1)) blocked the net inward current. Replacement of Ca2+ with 10 mmol L(-)1 Ba2+ significantly increased the amplitude of L-type Ca2+ currents. These results demonstrate that smooth muscle cells freshly isolated from rat tail main artery may be divided into two populations, one expressing both L- and T-type and the other only L-type Ca2+ channels. Furthermore, this report shows that in arterial smooth muscle cells cinnarizine potently inhibited T-type currents at low concentrations (1 micromol L(-1)) but also blocked L-type Ca2+ currents at higher concentrations (10 micromol L(-1)).
2001
Petkov G., V., Fusi, F., Saponara, S., Gagov, H., Sgaragli, G.P., Boev, K.K. (2001). Characterization of voltage-gated calcium currents in freshly isolated smooth muscle cells from rat tail main artery. ACTA PHYSIOLOGICA SCANDINAVICA, 173(3), 257-265 [10.1046/j.1365-201X.2001.00907.x].
File in questo prodotto:
File Dimensione Formato  
2001 rat tail APS.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 441 kB
Formato Adobe PDF
441 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/43810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo