This paper proposes a three-stage procedure for parametric identification of piecewise affine autoregressive exogenous (PWARX) models. The first stage simultaneously classifies the data points and estimates the number of submodels and the corresponding parameters by solving the partition into a minimum number of feasible subsystems (MIN PFS) problem for a suitable set of linear complementary inequalities derived from data. Second, a refinement procedure reduces misclassifications and improves parameter estimates. The third stage determines a polyhedral partition of the regressor set via two-class or multiclass linear separation techniques. As a main feature, the algorithm imposes that the identification error is bounded by a quantity delta. Such a bound is a useful tuning parameter to trade off between quality of fit and model complexity. The performance of the proposed PWA system identification procedure is demonstrated via numerical examples and on experimental data from an electronic component placement process in a pick-and-place machine.

Bemporad, A., Garulli, A., Paoletti, S., Vicino, A. (2005). A bounded-error approach to piecewise affine system identification. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 50(10), 1567-1580 [10.1109/TAC.2005.856667].

A bounded-error approach to piecewise affine system identification

GARULLI, ANDREA;PAOLETTI, SIMONE;VICINO, ANTONIO
2005-01-01

Abstract

This paper proposes a three-stage procedure for parametric identification of piecewise affine autoregressive exogenous (PWARX) models. The first stage simultaneously classifies the data points and estimates the number of submodels and the corresponding parameters by solving the partition into a minimum number of feasible subsystems (MIN PFS) problem for a suitable set of linear complementary inequalities derived from data. Second, a refinement procedure reduces misclassifications and improves parameter estimates. The third stage determines a polyhedral partition of the regressor set via two-class or multiclass linear separation techniques. As a main feature, the algorithm imposes that the identification error is bounded by a quantity delta. Such a bound is a useful tuning parameter to trade off between quality of fit and model complexity. The performance of the proposed PWA system identification procedure is demonstrated via numerical examples and on experimental data from an electronic component placement process in a pick-and-place machine.
2005
Bemporad, A., Garulli, A., Paoletti, S., Vicino, A. (2005). A bounded-error approach to piecewise affine system identification. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 50(10), 1567-1580 [10.1109/TAC.2005.856667].
File in questo prodotto:
File Dimensione Formato  
BGPV05.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 726.56 kB
Formato Adobe PDF
726.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/26527
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo