PVA based hydrogels were synthesised using, as crosslinking agent, trisodium trimetaphosphate (STMP) to obtain potential substitutes for the vitreous body of the eye. The hydrogels, obtained using different amounts of STMP, were characterised by Infrared Spectroscopy which confirmed the successful occurrence of crosslinking reaction. The mechanical spectra of the fully hydrated samples confirmed covalently crosslinked systems (i.e. G’>G”). The rheological analysis pointed out that only one of the hydrogels (PVA STMP 8:1) showed a behaviour similar to that of human vitreous. The hydrogel was also subjected to injection through a small needle, a procedure that is essential in the use of vitreous substitutes. Further analysis in terms of light transmittance, water content measurements, diffusion coefficient and cytotoxicity confirmed the applicability of such a hydrogel as vitreous substitute.
Leone, G., Consumi, M., Aggravi, M., Donati, A., Lamponi, S., Magnani, A. (2010). PVA/STMP based hydrogels as potential substitutes of human vitreous. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE, 21(8), 2491-2500 [10.1007/s10856-010-4092-7].
PVA/STMP based hydrogels as potential substitutes of human vitreous
LEONE, GEMMA;CONSUMI M;DONATI, ALESSANDRO;LAMPONI, STEFANIA;MAGNANI, AGNESE
2010-01-01
Abstract
PVA based hydrogels were synthesised using, as crosslinking agent, trisodium trimetaphosphate (STMP) to obtain potential substitutes for the vitreous body of the eye. The hydrogels, obtained using different amounts of STMP, were characterised by Infrared Spectroscopy which confirmed the successful occurrence of crosslinking reaction. The mechanical spectra of the fully hydrated samples confirmed covalently crosslinked systems (i.e. G’>G”). The rheological analysis pointed out that only one of the hydrogels (PVA STMP 8:1) showed a behaviour similar to that of human vitreous. The hydrogel was also subjected to injection through a small needle, a procedure that is essential in the use of vitreous substitutes. Further analysis in terms of light transmittance, water content measurements, diffusion coefficient and cytotoxicity confirmed the applicability of such a hydrogel as vitreous substitute.File | Dimensione | Formato | |
---|---|---|---|
full_text.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
429.27 kB
Formato
Adobe PDF
|
429.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/25746
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo