We present a study of the electronic, photophysical, and picosecond excited-state relaxation characteristics of a class of derivatives comprised of multiple bipyridylboronium acceptors covalently linked to a ferrocene donor. These compounds exhibit a broad visible absorption band, which we attribute to a metal-to-ligand charge transfer transition between the donor and the acceptor. A comparison of optical absorption, spectroelectrochemical, and theoretical results confirms the assignment of the band and provides information on the degree of electron delocalization between the donor and the acceptor. Picosecond transient absorption measurements reveal that the back-electron transfer relaxation is critically dependent on the structural flexibility of the bridging bonds between the donor and the acceptor. In the case where the acceptor substituents are free to rotate about the bridging bonds between the boron and the cyclopentadienyl rings of the ferrocene, a significant portion of the excited state decays directly back to the ground state on a time scale of ∼18 ps, whereas in the case where an additional ansa-bridge that connects acceptor substituents enforces a more rigid conformation, the ground-state recovery proceeds only on a ∼800-ps time scale. This demonstrates the importance of conformational degrees of freedom for the internal conversion and back-electron transfer in these systems.

Thomson, M.D., Novosel, M., Roskos, H.G., Muller, T., Scheibitz, M., Wagner, M., et al. (2004). Electronic structure, photophysics, and relaxation dynamics of charge transfer excited states in boron-nitrogen-bridged ferrocene-donor organic-acceptor compounds. JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY, 108(16), 3281-3291 [10.1021/jp037044p].

Electronic structure, photophysics, and relaxation dynamics of charge transfer excited states in boron-nitrogen-bridged ferrocene-donor organic-acceptor compounds

Fabrizi De Biani, Fabrizia;Zanello, Piero
2004-01-01

Abstract

We present a study of the electronic, photophysical, and picosecond excited-state relaxation characteristics of a class of derivatives comprised of multiple bipyridylboronium acceptors covalently linked to a ferrocene donor. These compounds exhibit a broad visible absorption band, which we attribute to a metal-to-ligand charge transfer transition between the donor and the acceptor. A comparison of optical absorption, spectroelectrochemical, and theoretical results confirms the assignment of the band and provides information on the degree of electron delocalization between the donor and the acceptor. Picosecond transient absorption measurements reveal that the back-electron transfer relaxation is critically dependent on the structural flexibility of the bridging bonds between the donor and the acceptor. In the case where the acceptor substituents are free to rotate about the bridging bonds between the boron and the cyclopentadienyl rings of the ferrocene, a significant portion of the excited state decays directly back to the ground state on a time scale of ∼18 ps, whereas in the case where an additional ansa-bridge that connects acceptor substituents enforces a more rigid conformation, the ground-state recovery proceeds only on a ∼800-ps time scale. This demonstrates the importance of conformational degrees of freedom for the internal conversion and back-electron transfer in these systems.
2004
Thomson, M.D., Novosel, M., Roskos, H.G., Muller, T., Scheibitz, M., Wagner, M., et al. (2004). Electronic structure, photophysics, and relaxation dynamics of charge transfer excited states in boron-nitrogen-bridged ferrocene-donor organic-acceptor compounds. JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY, 108(16), 3281-3291 [10.1021/jp037044p].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/22892
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo