An in-depth analysis of the mechanism of the L-type Ca(2+) current [I(Ca(L))] stimulation induced by myricetin was performed in rat tail artery myocytes using the whole-cell patch-clamp method. Myricetin increased I(Ca(L)) in a frequency-, concentration-, and voltage-dependent manner. At holding potentials (V(h)) of -50 and -90 mV, the pEC(50) values were 4.9 +/- 0.1 and 4.2 +/- 0.1, respectively; the latter corresponded to the drug-apparent dissociation constant for resting channels, K(R), of 67.6 microM. Myricetin shifted the maximum of the current-voltage relationship by 10 mV in the hyperpolarizing direction but did not modify the threshold for I(Ca(L)) or the T-type Ca(2+) current. The Ca(2+) channel blockers nifedipine, verapamil, and diltiazem antagonized I(Ca(L)) in the presence of myricetin. Myricetin increased the time to peak of I(Ca(L)) in a voltage- and concentration-dependent manner. Washout reverted myricetin effect on both current kinetics and amplitude at V(h) of -90 mV while reverting only current kinetics at V(h) of -50 mV. At the latter V(h), myricetin shifted the voltage dependence of inactivation and activation curves to more negative potentials by 6.4 and 13.0 mV, respectively, in the mid-potential of the curves. At V(h) of -90 mV, myricetin shifted, in a concentration-dependent manner, the voltage dependence of the inactivation curve to more negative potentials with an apparent dissociation constant for inactivated channels (K(I)) of 13.8 muM. Myricetin induced a frequency- and V(h)-dependent block of I(Ca(L)). In conclusion, myricetin behaves as an L-type Ca(2+) channel agonist that stabilizes the channel in its inactivated state

Fusi, F., Sgaragli, G.P., Saponara, S. (2005). Mechanism of myricetin stimulation of vascular L-type Ca2+ current. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 313(2), 790-797.

Mechanism of myricetin stimulation of vascular L-type Ca2+ current

Fusi, Fabio;Sgaragli, Gian Pietro;Saponara, Simona
2005-01-01

Abstract

An in-depth analysis of the mechanism of the L-type Ca(2+) current [I(Ca(L))] stimulation induced by myricetin was performed in rat tail artery myocytes using the whole-cell patch-clamp method. Myricetin increased I(Ca(L)) in a frequency-, concentration-, and voltage-dependent manner. At holding potentials (V(h)) of -50 and -90 mV, the pEC(50) values were 4.9 +/- 0.1 and 4.2 +/- 0.1, respectively; the latter corresponded to the drug-apparent dissociation constant for resting channels, K(R), of 67.6 microM. Myricetin shifted the maximum of the current-voltage relationship by 10 mV in the hyperpolarizing direction but did not modify the threshold for I(Ca(L)) or the T-type Ca(2+) current. The Ca(2+) channel blockers nifedipine, verapamil, and diltiazem antagonized I(Ca(L)) in the presence of myricetin. Myricetin increased the time to peak of I(Ca(L)) in a voltage- and concentration-dependent manner. Washout reverted myricetin effect on both current kinetics and amplitude at V(h) of -90 mV while reverting only current kinetics at V(h) of -50 mV. At the latter V(h), myricetin shifted the voltage dependence of inactivation and activation curves to more negative potentials by 6.4 and 13.0 mV, respectively, in the mid-potential of the curves. At V(h) of -90 mV, myricetin shifted, in a concentration-dependent manner, the voltage dependence of the inactivation curve to more negative potentials with an apparent dissociation constant for inactivated channels (K(I)) of 13.8 muM. Myricetin induced a frequency- and V(h)-dependent block of I(Ca(L)). In conclusion, myricetin behaves as an L-type Ca(2+) channel agonist that stabilizes the channel in its inactivated state
2005
Fusi, F., Sgaragli, G.P., Saponara, S. (2005). Mechanism of myricetin stimulation of vascular L-type Ca2+ current. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 313(2), 790-797.
File in questo prodotto:
File Dimensione Formato  
2005 myricetin pc JPET.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 365.19 kB
Formato Adobe PDF
365.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/22507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo