Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine involved in regulation of macrophage function. In addition, MIF may also play a role in murine and human reproduction. Although both first trimester trophoblast and decidua express MIF, the regulation and functional significance of this cytokine during human placental development remains unclear. We assessed MIF expression throughout normal human placental development, as well as in in vitro (chorionic villous explants) and in vivo (high altitude placentae) models of human placental hypoxia. Dimethyloxalylglycine (DMOG), which stabilizes hypoxia inducible factor-1 under normoxic conditions, was also used to mimic the effects of hypoxia on MIF expression. Quantitative real-time PCR and Western blot analysis showed high MIF protein and mRNA expression at 7-10 wk and lower levels at 11-12 wk until term. Exposure of villous explants to 3% O(2) resulted in increased MIF expression and secretion relative to standard conditions (20% O(2)). DMOG treatment under 20% O(2) increased MIF expression. In situ hybridization and immunohistochemistry showed elevated MIF expression in low oxygen-induced extravillous trophoblast cells. Finally, a significant increase in MIF transcript was observed in placental tissues from high-altitude pregnancies. Hence, three experimental models of placental hypoxia (early gestation, DMOG treatment, and high altitude) converge in stimulating increased MIF, supporting the conclusion that placental-derived MIF is an oxygen-responsive cytokine highly expressed in physiological in vivo and in in vitro low oxygen conditions.

Ietta, F., Wu, Y., Romagnoli, R., Soleymanlou, N., Orsini, B., Zamudio, S., et al. (2007). Oxygen regulation of macrophage migration inhibitory factor in human placenta. AMERICAN JOURNAL OF PHYSIOLOGY: ENDOCRINOLOGY AND METABOLISM, 292, E272-E280.

Oxygen regulation of macrophage migration inhibitory factor in human placenta.

IETTA, FRANCESCA;ROMAGNOLI, ROBERTA;RICCI, LUANA;
2007-01-01

Abstract

Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine involved in regulation of macrophage function. In addition, MIF may also play a role in murine and human reproduction. Although both first trimester trophoblast and decidua express MIF, the regulation and functional significance of this cytokine during human placental development remains unclear. We assessed MIF expression throughout normal human placental development, as well as in in vitro (chorionic villous explants) and in vivo (high altitude placentae) models of human placental hypoxia. Dimethyloxalylglycine (DMOG), which stabilizes hypoxia inducible factor-1 under normoxic conditions, was also used to mimic the effects of hypoxia on MIF expression. Quantitative real-time PCR and Western blot analysis showed high MIF protein and mRNA expression at 7-10 wk and lower levels at 11-12 wk until term. Exposure of villous explants to 3% O(2) resulted in increased MIF expression and secretion relative to standard conditions (20% O(2)). DMOG treatment under 20% O(2) increased MIF expression. In situ hybridization and immunohistochemistry showed elevated MIF expression in low oxygen-induced extravillous trophoblast cells. Finally, a significant increase in MIF transcript was observed in placental tissues from high-altitude pregnancies. Hence, three experimental models of placental hypoxia (early gestation, DMOG treatment, and high altitude) converge in stimulating increased MIF, supporting the conclusion that placental-derived MIF is an oxygen-responsive cytokine highly expressed in physiological in vivo and in in vitro low oxygen conditions.
2007
Ietta, F., Wu, Y., Romagnoli, R., Soleymanlou, N., Orsini, B., Zamudio, S., et al. (2007). Oxygen regulation of macrophage migration inhibitory factor in human placenta. AMERICAN JOURNAL OF PHYSIOLOGY: ENDOCRINOLOGY AND METABOLISM, 292, E272-E280.
File in questo prodotto:
File Dimensione Formato  
E272.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 358.74 kB
Formato Adobe PDF
358.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/20589
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo