New substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides were synthesized by replacing the 2,4-dichlorobenzyl and cyclohexyl moieties at the 3-carboxamide nitrogen of the previously reported CB1 receptor antagonists/inverse agonists 4 and 5. Several ligands showed potent affinity for the hCB1 receptor, with Ki concentrations comparable to the reference compounds 1, 4 and 5, and exhibited CB1 selectivity comparable to 1 and 2. Docking experiments and molecular dynamics (MD) simulations explained the potent hCB1 binding affinity of compounds 31 and 37. According to our previous studies, 31 and 37 formed a H-bond with K3.28(192), which accounted for the high affinity for the receptor inactive state and the inverse agonist activity. The finding of inhibition of food intake following their acute administration to rats, supported the concept that the CB1 selective compounds 4 and 52 act as antagonists/inverse agonists

Silvestri, R., Ligresti, A., LA REGINA, G., Piscitelli, F., Gatti, V., Brizzi, A., et al. (2009). Synthesis, cannabinoid receptor affinity, molecular modeling studies and in vivo pharmacological evaluation of new substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. 2. Effect of the 3-carboxamide substituent on the affinity and selectivity profile. BIOORGANIC & MEDICINAL CHEMISTRY, 17(15), 5549-5564 [10.1016/j.bmc.2009.06.027].

Synthesis, cannabinoid receptor affinity, molecular modeling studies and in vivo pharmacological evaluation of new substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. 2. Effect of the 3-carboxamide substituent on the affinity and selectivity profile.

Brizzi, Antonella;Pasquini, Serena;Corelli, Federico
2009-01-01

Abstract

New substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides were synthesized by replacing the 2,4-dichlorobenzyl and cyclohexyl moieties at the 3-carboxamide nitrogen of the previously reported CB1 receptor antagonists/inverse agonists 4 and 5. Several ligands showed potent affinity for the hCB1 receptor, with Ki concentrations comparable to the reference compounds 1, 4 and 5, and exhibited CB1 selectivity comparable to 1 and 2. Docking experiments and molecular dynamics (MD) simulations explained the potent hCB1 binding affinity of compounds 31 and 37. According to our previous studies, 31 and 37 formed a H-bond with K3.28(192), which accounted for the high affinity for the receptor inactive state and the inverse agonist activity. The finding of inhibition of food intake following their acute administration to rats, supported the concept that the CB1 selective compounds 4 and 52 act as antagonists/inverse agonists
2009
Silvestri, R., Ligresti, A., LA REGINA, G., Piscitelli, F., Gatti, V., Brizzi, A., et al. (2009). Synthesis, cannabinoid receptor affinity, molecular modeling studies and in vivo pharmacological evaluation of new substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. 2. Effect of the 3-carboxamide substituent on the affinity and selectivity profile. BIOORGANIC & MEDICINAL CHEMISTRY, 17(15), 5549-5564 [10.1016/j.bmc.2009.06.027].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/18901
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo