In this paper the problem of constructing the minimum ℓ1 uncertainty model containing a finite set of assigned models is addressed. This problem is relevant to ℓ1 robust control design techniques, in order to minimize the size of the uncertainty set associated to the nominal plant. The problem is formulated as a (conditional) Chebyshev center problem and an algorithm for its solution is proposed. The algorithm converges in a finite number of steps showing computational efficiency for large size problems.
Casini, M., Garulli, A., Vicino, A. (2008). Efficient computation of l1 uncertainty model from an impulse response set. AUTOMATICA, 44(10), 2570-2576 [10.1016/j.automatica.2008.02.006].
Efficient computation of l1 uncertainty model from an impulse response set
CASINI, MARCO;GARULLI, ANDREA;VICINO, ANTONIO
2008-01-01
Abstract
In this paper the problem of constructing the minimum ℓ1 uncertainty model containing a finite set of assigned models is addressed. This problem is relevant to ℓ1 robust control design techniques, in order to minimize the size of the uncertainty set associated to the nominal plant. The problem is formulated as a (conditional) Chebyshev center problem and an algorithm for its solution is proposed. The algorithm converges in a finite number of steps showing computational efficiency for large size problems.File | Dimensione | Formato | |
---|---|---|---|
Automatica08-final.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/18591
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo