Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group $\Sp(2n,\F)$ whose highest weight is the $n$-th fundamental dominant weight. The module $V$ affords the grassmann embedding of the symplectic dual polar space $DW(2n-1,\F)$, therefore $V$ is also called the grassmann-module for the symplectic group. We consider the smallest case for $Char(\F)$ odd for which $V$ is reducible, namely $n = 4$ and $Char(\F)=3$. In this case the unique factor $R$ of $V$ has vector dimension $1$. Here we provide a geometric description for $R$ and study some relations between $R$ and other objects associated with the grassmann embedding.

Cardinali, I. (2010). On the Grassmann module of symplectic dual polar spaces of rank 4 in characteristic 3. DISCRETE MATHEMATICS, 310, 3219-3227 [10.1016/j.disc.2009.10.017].

On the Grassmann module of symplectic dual polar spaces of rank 4 in characteristic 3

CARDINALI, ILARIA
2010-01-01

Abstract

Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group $\Sp(2n,\F)$ whose highest weight is the $n$-th fundamental dominant weight. The module $V$ affords the grassmann embedding of the symplectic dual polar space $DW(2n-1,\F)$, therefore $V$ is also called the grassmann-module for the symplectic group. We consider the smallest case for $Char(\F)$ odd for which $V$ is reducible, namely $n = 4$ and $Char(\F)=3$. In this case the unique factor $R$ of $V$ has vector dimension $1$. Here we provide a geometric description for $R$ and study some relations between $R$ and other objects associated with the grassmann embedding.
2010
Cardinali, I. (2010). On the Grassmann module of symplectic dual polar spaces of rank 4 in characteristic 3. DISCRETE MATHEMATICS, 310, 3219-3227 [10.1016/j.disc.2009.10.017].
File in questo prodotto:
File Dimensione Formato  
DM-grass_veronese-rank4.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 344 kB
Formato Adobe PDF
344 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/18563
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo