Let V be the Weyl module of dimension (2n n) - (2n n-2) for the symplectic group Sp(2n, F) whose highest weight is the nth fundamental dominant weight. The module V affords the grassmann embedding of the symplectic dual polar space DW (2n - 1, F), therefore V is also called the grassmann module for the symplectic group. We consider the smallest case for char(F) odd for which V is reducible, namely n = 4 and char(F) = 3. In this case the unique factor R of V has vector dimension I. Here we provide a geometric description for Rand study some relations between Rand other objects associated with the grassmann embedding. (C) 2009 Elsevier B.V. All rights reserved.
Cardinali, I. (2010). On the Grassmann module of symplectic dual polar spaces of rank 4 in characteristic 3. DISCRETE MATHEMATICS, 310(22), 3219-3227 [10.1016/j.disc.2009.10.017].
On the Grassmann module of symplectic dual polar spaces of rank 4 in characteristic 3
CARDINALI, I.
2010-01-01
Abstract
Let V be the Weyl module of dimension (2n n) - (2n n-2) for the symplectic group Sp(2n, F) whose highest weight is the nth fundamental dominant weight. The module V affords the grassmann embedding of the symplectic dual polar space DW (2n - 1, F), therefore V is also called the grassmann module for the symplectic group. We consider the smallest case for char(F) odd for which V is reducible, namely n = 4 and char(F) = 3. In this case the unique factor R of V has vector dimension I. Here we provide a geometric description for Rand study some relations between Rand other objects associated with the grassmann embedding. (C) 2009 Elsevier B.V. All rights reserved.| File | Dimensione | Formato | |
|---|---|---|---|
|
DM-grass_veronese-rank4.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
344 kB
Formato
Adobe PDF
|
344 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/18563
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
