Let V be the Weyl module of dimension (2n n) - (2n n-2) for the symplectic group Sp(2n, F) whose highest weight is the nth fundamental dominant weight. The module V affords the grassmann embedding of the symplectic dual polar space DW (2n - 1, F), therefore V is also called the grassmann module for the symplectic group. We consider the smallest case for char(F) odd for which V is reducible, namely n = 4 and char(F) = 3. In this case the unique factor R of V has vector dimension I. Here we provide a geometric description for Rand study some relations between Rand other objects associated with the grassmann embedding. (C) 2009 Elsevier B.V. All rights reserved.

Cardinali, I. (2010). On the Grassmann module of symplectic dual polar spaces of rank 4 in characteristic 3. DISCRETE MATHEMATICS, 310(22), 3219-3227 [10.1016/j.disc.2009.10.017].

On the Grassmann module of symplectic dual polar spaces of rank 4 in characteristic 3

CARDINALI, I.
2010-01-01

Abstract

Let V be the Weyl module of dimension (2n n) - (2n n-2) for the symplectic group Sp(2n, F) whose highest weight is the nth fundamental dominant weight. The module V affords the grassmann embedding of the symplectic dual polar space DW (2n - 1, F), therefore V is also called the grassmann module for the symplectic group. We consider the smallest case for char(F) odd for which V is reducible, namely n = 4 and char(F) = 3. In this case the unique factor R of V has vector dimension I. Here we provide a geometric description for Rand study some relations between Rand other objects associated with the grassmann embedding. (C) 2009 Elsevier B.V. All rights reserved.
2010
Cardinali, I. (2010). On the Grassmann module of symplectic dual polar spaces of rank 4 in characteristic 3. DISCRETE MATHEMATICS, 310(22), 3219-3227 [10.1016/j.disc.2009.10.017].
File in questo prodotto:
File Dimensione Formato  
DM-grass_veronese-rank4.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 344 kB
Formato Adobe PDF
344 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/18563
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo