We consider a Plateau problem in codimension 1 in the non-parametric setting, where a Dirichlet boundary datum is assigned only on part of the boundary ∂Ω of a bounded convex domain Ω ⊂ R2. Where the Dirichlet datum is not prescribed, we allow a free contact with the horizontal plane. We show existence of a solution, and prove regularity for the corresponding area-minimizing surface. We compare these solutions with the classical minimal surfaces of Meeks and Yau, and show that they are equivalent when the Dirichlet boundary datum is assigned on at most 2 disjoint arcs of ∂Ω.
Bellettini, G., Marziani, R., Scala, R. (2024). A non-parametric Plateau problem with partial free boundary. JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES, 11, 1035-1098 [10.5802/jep.273].
A non-parametric Plateau problem with partial free boundary
Giovanni Bellettini;Roberta Marziani;Riccardo Scala
2024-01-01
Abstract
We consider a Plateau problem in codimension 1 in the non-parametric setting, where a Dirichlet boundary datum is assigned only on part of the boundary ∂Ω of a bounded convex domain Ω ⊂ R2. Where the Dirichlet datum is not prescribed, we allow a free contact with the horizontal plane. We show existence of a solution, and prove regularity for the corresponding area-minimizing surface. We compare these solutions with the classical minimal surfaces of Meeks and Yau, and show that they are equivalent when the Dirichlet boundary datum is assigned on at most 2 disjoint arcs of ∂Ω.File | Dimensione | Formato | |
---|---|---|---|
bellettini_marziani_scala_JEP.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1276841