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AssTract. — We consider a Plateau problem in codimension 1 in the non-parametric setting,

where a Dirichlet boundary datum is assigned only on part of the boundary 92 of a bounded
convex domain  C R2. Where the Dirichlet datum is not prescribed, we allow a free con-
tact with the horizontal plane. We show existence of a solution, and prove regularity for the
corresponding area-minimizing surface. We compare these solutions with the classical minimal
surfaces of Meeks and Yau, and show that they are equivalent when the Dirichlet boundary
datum is assigned on at most 2 disjoint arcs of 9S2.

Résumit (Un probléme de Plateau non paramétrique avec condition au bord partiellement libre)

Nous considérons un probleme de Plateau en codimension 1 dans un cadre non paramétrique,
ou une donnée de Dirichlet n’est assignée que sur une partie de la frontiére 92 d’un domaine
convexe borné Q C R2. La ol la donnée de Dirichlet n’est pas prescrite, nous autorisons un
contact libre avec le plan horizontal. Nous montrons ’existence d’une solution, et prouvons
la régularité de la surface minimale correspondante. Nous comparons ces solutions avec les
surfaces minimales classiques de Meeks et Yau, et montrons qu’elles sont équivalentes lorsque
la donnée de Dirichlet est assignée sur au plus 2 arcs disjoints de 0f2.
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1. INnTRODUCTION

The Plateau problem is a classical problem in the Calculus of Variations modeling
configurations of soap films obtained by immersing a wire frame into soapy water.
Roughly speaking, it consists in seeking for an area minimizing surface over all surfaces
with prescribed boundary a given closed Jordan curve in space. Over the years several
approaches and variants were proposed, each corresponding to a specific choice of the
class of admissible surfaces. In the following we list just few of them and we refer
for example to [30] and references therein for a list of the main approaches available
in the literature. One of the first result is due to Weierstrass and Riemann who
studied a non-parametric Plateau problem in R? obtained by minimizing the area over
all Cartesian surfaces; this gave rise to the theory of minimal surfaces. Successively
Douglas and Radé developed independently [23, 36] the classical parametric approach
for disk type solutions. This method was later generalized by Jost [31] to study the
Plateau problem for surfaces with higher genus (see also the paper [34] by Meeks and
Yau). A more general approach which accounts for a large class of surfaces was instead
proposed by Federer and Fleming [25], based on integral currents. Another remarkable
work is due to Reifenberg [38] which adopts completely different techniques involving
the concept of Cech homology. Relevant is also Almgren’s contribution with three
different approaches, one of these using the notion of varifolds [2]. Among all possible
variants one might consider a partial free boundary version of the Plateau problem
where the boundary datum is partially fixed and partially free to move within a
given surface. This type of problem has been exhaustively studied (see for instance
[22]) in the parametric framework but never investigated, to our best knowledge,
with the non-parametric approach. To this aim, in the present paper we will analyze
existence and regularity of solutions of a non-parametric partial free boundary Plateau
problem. More precisely, we look for an area-minimizing surface which can be written
as a graph over a bounded open convex set 2 C R?, and spanning a Jordan curve
Iy, = yUo C R? x [0,+00) that is partially fixed. Namely, v is fixed (Dirichlet
condition) and is given by a family {v;}%; C 9Q x [0,+00) of n € N curves each
joining distinct pairs of points {(p;,¢;)}7—, of 9Q. Whereas o, which represents the
free boundary, is an unknown and counsists of (the image of) n curves o1, ..., oy, sitting
in , and joining the endpoints of 7 in order that yUo forms a Jordan curve I', in R3.
We assume that each ~; is Cartesian, i.e., it can be expressed as the graph of a given
nonnegative function ¢ defined on a corresponding portion of 92. This allows to
restrict ourselves to the Cartesian setting, and to assume that the competitors for
the Plateau problem are expressed by graphs of functions 1 defined on a suitable
subdomain of € depending on o; see Figure 1 when n = 3. A peculiarity of our
problem is the presence of a free boundary.

The purpose of this paper is twofold. We start addressing the question of existence
and regularity of solutions. Our first main result (Theorems 1.1, 3.1 and 5.1) asserts
that there are always solutions (which can be degenerate, in the sense that they
may consist of more than one connected component, see the example of the catenoid
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below) and that, under suitable hypotheses on the boundary datum, there is at least
one regular solution continuous up to the boundary. Next we compare our solutions
with solutions to a parametric Plateau problem when n = 1, 2. Roughly speaking, our
second main result (Theorems 1.2, 6.1 and 6.4) shows that any regular solution to our
minimization problem is a minimal embedding in the sense of Mecks and Yau [34],
and vice-versa.

Existence and regularity of solutions. — We describe here our main results with few
details, referring to Section 2 for the precise description of the mathematical frame-
work. We fix n € N and 2n distinct points p1, g1, p2,q2, - - - s Pn, ¢n € 02 in clockwise
order, and set g,+1 := p1. The relatively open arc of 92 between the points p; and
q; is noted by 9PQ, and the relatively open arc between ¢; and p; 1 by 09Q. We fix
a nonnegative continuous function ¢: 9Q — [0, 400) positive on 0°Q := (J_, 9PQ
and vanishing on {p;, ¢;}"_; U 98°Q2, where 0°Q := [J]_, 89Q. For every i = 1,...,n,
we denote by 7; the graph of ¢ over 9P and we consider curves o;: [0,1] — Q with
the following properties:

(i) oy is injective, 0;(0) = ¢; and (1) = pi+1, foralli =1,...,n;

(ii) int(E(o;)) Nint(E(o;)) = & for 4,5 = 1,...,n, i # j, where int denotes the
interior part.
Note carefully that o; and o; are allowed to partially overlap.

We suppose the graph of ¢ over 9P to be a Lipschitz curve in R? (see Figure 1).
Finally we set

(1.1) E(o) = U) B(o),
and define the two classes
(1.2) Y= {0 =(01,...,00) € (Lip([0,1];©2))" satisfies (i)-(ii)},
(1.3) Xy :={(0,9) € X x WHH(Q) : ¢y =0 a.e. in E(c) and ¥ = ¢ on 9°Q}.
If (0,9) € X, then the graph of ¢ over Q\ E(0) is a surface spanning the curve I',.

We look for a pair (o,1) minimizing the area of such surfaces, that is, we want to
find a solution to the minimum problem

(1.4) inf / V1t VO de.
(o,)EX, QN E(o0)

We then prove the following result, accounting for existence and regularity of solu-
tions to (1.4).

Tueorem 1.1. Let Q be strictly convex. Then there exists a solution (o,v) € X,
to (1.4) such that 1 is continuous on €, analytic in O~ E(o), and QNOE(c) consists
of a family of mutually disjoint analytic curves (joining p; and q; in some order).
Moreover, each connected component of E(o) is convet.

We emphasize that convexity of € is necessary (even for the classical non-
parametric Plateau problem with no free boundary, existence of regular solutions is
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1038 G. Bereerring R, Marziant & R, Scara

Ficure 1. An example of the setting (in 3D), when n = 3. On the
boundary of the convex set € fix the points p;, ¢;; the arc of 99 join-
ing p; to g; is P Q, while the arc joining g; to p;11 is 0YQ (p4 := p1).
On 0P the Dirichlet boundary datum ¢ is imposed, whose graph
has been depicted. The dotted arcs are the free planar curves o; join-

ing g; and p;1.

not guaranteed if  is not convex). The proof of existence relies on direct methods;
however, since the class X, is not closed under weak* convergence in BV, they
cannot be applied directly to (1.4) but rather to a suitable weak formulation. For
this reason we replace X, in (1.3) with a larger class W of admissible pairs, and relax
accordingly the functional in (1.4). We set

(1.5) W= {(0,9) € L x BV(Q) : ¢p =0 a.e. in E(0)}.

The weak formulation consists in looking for solutions to the problem
1.6 inf  F(o,),

(1.6) oot T )

where JF is the functional defined by

F(o, 1) = /Q JIH VO do + |D9)(Q) — |E(0)] + /8 vl e
(L.7) =/Q o, VISP dw+|DSw\<Q>+/m|w—so| a3,

with D*i the singular part of the measure D1 and |E(o)| the Lebesgue measure
of E(c). Observe that F(o,) equals the integral in (1.4) when ¢ € WH1(Q) attains
the boundary value ¢. The existence of solutions to (1.6) is shown in two steps.
In the first step we prove existence of minimizers of F in a smaller class Weony C W
of admissible pairs (o,1), where compactness is easier and allows to make use of
the direct method. The class W¢ony accounts only for specific geometries of the free
boundary o, namely, each set E(o;) is required to be convex (see (2.6) for its precise
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definition). In the second step we show, by means of a convexification procedure, that
every minimizer (o,v%) € Weony is actually a solution to (1.6). Eventually we prove
that there exists at least a minimizer (0,v%) € Weony which satisfies certain regularity
properties, and in particular is a solution to (1.4). The fact that, for minimizers, all
connected components of F (o) are convex, is somehow a consequence of the maximum
principle, i.e., every minimal surface is contained in the convex hull of its boundary.
The existence and regularity of a solution to (1.6) are contained in Theorems 3.1
and 5.1 respectively, which in turn imply Theorem 1.1. We stress that Theorems 3.1
and 5.1 are actually stated in the more general case of a convex planar domain Q.
However, if Q is convex but not strictly convex it may happen that a solution to (1.6)
is “less regular”, in the sense that 1) may not achieve the boundary condition (as in
the next example), thus failing to be a solution to (1.4).

The example of the catenoid. Our prototypical example is given by (half of) the
catenoid. Consider a cylinder in R? with basis a circle of radius r and height ¢. Choose
Cartesian coordinates for which the x;xs-plane contains the cylinder axis, and restrict
attention to the half-space {3 > 0} as in Figure 2, where Q = Ry := (0,£) x (—r,7)
and n = 2. Write

o0 =0oPQudloualouala,
where
OPQ = {0} x (=r,7), Q0 =(0,0)x{r}, 0P2Q = {t}x(—r,7), 090 = (0,€) x {—r}.

On the Dirichlet boundary 0°Q = 9P QUL Q) we prescribe the continuous function ¢
whose graph consists of the two half-circles v and 5. The endpoints of v and 5 live
on the free boundary plane (the horizontal plane) and are p; = (0, —r), ¢1 = (0,7), and
p2 = (¢, 1), g2 = (¢, —r), respectively. The free boundary o consists of two curves o1
and o9 with endpoints ¢1,p2, and go, p1, respectively, constrained to stay in Q. The
concatenation of v =y, U7, and ¢ forms a Jordan curve

(18) I'y=vmUop U’YQUUQCRS.

Therefore we look for an area-minimizer among all Cartesian surfaces S with bound-
ary I', keeping o free, i.e., we look for a solution to (1.4) for this specific geometry.
In this case a minimizing sequence (o, %) C W of the weak formulation (1.7) tends
(in the sense of Definition 4.3) to a minimizer (0,%) € Weony which allows for two
different possibilities. If £ is small, o1 and o9 remain disjoint and (o, %) € X,,. In par-
ticular, the area-minimizing surface S (given by the graph of ¥ over Q \ E(0)) is
the classical (half) catenoid (namely the intersection between the catenoid and the
half-space {x3 > 0}). If instead ¢ is large, the two curves o and o2 merge, the region
Q \ E(0) collapses (i.e., it reduces to the two segments 9PQ U 9£Q) and ¢ = 0
and therefore (o,1) ¢ X,. In particular, the surface S is the union of two vertical
(half) disks. We emphasize that this example is classical and, due to the rotational
symmetry of the curve T, it can be reduced to a 1-dimensional problem (see [29, 16]).
Let us now quickly describe the second part of the paper.

JEP — M., 2024, lome 11



1040 G. BerrerTing, R, Marziant & R. Scara

Ficure 2. The setting for the catenoid: for ¢ large enough (the
basis of the rectangle) the dotted curves oy and o2 merge and
the (generalized) graph of ¢ reduces to two vertical half-circles on
AP = 0P U AP In this case IPQ C OE(01) U IE(02).

Comparison with embedded minimal surfaces. — We recall that ~; is the graph of the

map ¢ on OPQ. We consider sym(v;), namely the graph of —p on 9P, which is
symmetric to 7; with respect to the plane containing 2. Setting I'; := ~; U sym(y;),
this turns out to be a simple Jordan curve in R3, for all i = 1,...,n. Hence we can
consider the classical Plateau problem for the curve I' := [ J;_, T';. In the case n =1
a solution is an area minimizing disk-type surface S spanning I' = I';. Whereas in
the case n = 2 a solution is either an annulus-type surface spanning I' = 'y UT's or
the union of two disjoint disks spanning I'; and T's, respectively. Then the following
result holds true:

Tueorem 1.2. Let Q) be strictly convex. For n € {1,2} let (0,v¢) € X, be a mini-
mizer as in Theorem 1.1. Let ST be the graph of ¢ over Q~ E(c) and let S~ be the
symmetric of ST with respect to the plane containing Q. Then the set S = STUS™ is
a solution to the classical Plateau problem associated to T' = J!_; I';. Vice-versa every
solution S to the classical Plateau problem associated to T' = J;_, T; is symmetric
with respect to the plane containing Q. Moreover, ST := SN {x3 > 0} is the graph
of ¥ over Q ~\ E(o) for some (o,v) € Xy, a minimizer as in Theorem 1.1.

The above theorem is rigorously stated in Theorems 6.1 (n = 1) and 6.4 (n = 2)
in the more general case of ) convex. In particular, if € is convex, we prove that
there is a correspondence between a regular solution to the weak formulation (1.6)
and a solution to the classical Plateau problem (as in the example of the catenoid).
A relevant consequence of this equivalence is that when the boundary closed curve I’
is symmetric with respect to the plane containing €2, and its upper part is Cartesian,
then the same property holds for the corresponding Meeks and Yau solution.

The proof of Theorem 1.2 for n = 1 is not difficult, whereas for n = 2 it is
considerably more complicated, and requires several lemmas: we strongly use the

JE.P — M., 2024, tome 11
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[9) q1

P2
»
a3 q2

P3

Ficure 3. A possible configuration of the sets E(o;) in the case
n = 3. On the (clockwise oriented) arcs p1q1 = OPQ, paga = 0PQ,
and p3q3 = 0P the function ¢ is prescribed and positive. On 9°Q =
@1p2Uqap3Ugspr and on E(0) = E(o1)UE(02) U E(03) we prescribe
1 = 0. The curves o; joining ¢; to p;+1 (with the corresponding
set E(0;)) are indicated. On the dotted segment oq and o2 overlaps
with opposite orientations. On the dark region Q \ E(c¢), 9 is not
necessarily null.

convexity of the domain 2, which implies that the cylinder  x R, whose boundary
contains T', is convex, and so the existence results of Meeks and Yau [34] (see also
Theorem 6.3) are applicable.

The main steps of the proof are the following: if S is a Meeks-Yau annulus-type
minimal surface, we perform a Steiner symmetrization of the 3-dimensional finite
perimeter set in 2 x R enclosed by S to obtain a set (symmetric with respect to the
plane containing 2) whose boundary is an annulus-type minimal surface S spanning I'
which is symmetric and such that St:=28n {z3 > 0} is Cartesian. In turn, using
standard results on the case of equality for the perimeter of a set and its symmetriza-
tion, we show that the original surface S was already symmetric with respect to the
plane containing 2, so ST was already Cartesian, and the conclusion of the proof for
n = 2 is achieved. Note that the aim of Theorem 1.2 is not to provide new examples
of minimal surfaces; rather, it enlightens (among other things) some interesting quali-
tative properties of the Meeks-Yau solutions. Due to the highly nontrivial arguments,
we have restricted our analysis to the cases n € {1,2}, since a generalization to the
case n > 2 probably requires heavy modifications. Indeed, some lemmas needed to
prove Theorem 6.4 employ crucially the fact that 9°Q consists of just two connected
components. For this reason we leave the case n > 2 for future investigations.

Some motivation. — The setting of our problem models a cluster of soap films which
are constrained to wet a given system of wires v emanating from a given free boundary
plane (representing a table, or a water surface, on which the soap films can freely
move). Our results show that if the system of wires describes the graphs of functions
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1042 G. BerrerTing, R, Marziant & R. Scara

on 0N as above, then the (Meeks and Yau) solutions of the “parametric” Plateau
problem are in fact Cartesian, and coincide with the solutions obtained by the non-
parametric approach. This result can be viewed as a generalization of the well-known
theorem of Radé stating that any minimal disk spanning a Jordan curve in R? whose
projection on a plane is a bijection with a convex Jordan curve is the graph of a
function defined on the plane [37].

However, the scope of this article goes beyond this generalization, and the solutions
we look for are strongly related with the vertical parts of Cartesian currents arising
in the analysis of the relaxation of the non parametric area functional in dimension 2
and codimension 2. We further comment on this in Section 7 where we go more into
details.

Structure of the paper. The paper is organized as follows. In Section 2 we intro-
duce the setting of the problem in detail. In Section 3 we show how to reduce the
minimum problem from the wider class W to the class Weony (Theorem 3.1). Next,
in Section 4 we prove the existence of minimizers in W¢qny. As a consequence, we gain
the existence of minimizers in class W (Corollary 4.2). In Section 5 we study the reg-
ularity of minimizers. Specifically, we state and prove Theorem 5.1 which, together
with Theorem 3.1, generalize Theorem 1.1. Theorem 1.1 follows from Theorem 4.1,
Corollary 4.2, and Theorem 5.1. Eventually, in Section 6 we compare our solutions
with the classical minimal surfaces spanning I'. Here, as anticipated, we restrict the
analysis to n = 1,2, the case n = 2 essentially giving rise to either a catenoid-type
minimal surface, or two disk-type surfaces spanning I'; and I's. The main theorems
here are Theorems 6.1 and 6.4. In Section 7 we briefly point out our motivations for
the present study and some open problems. The paper concludes with an appendix
containing some rather classical results on convex sets and Hausdorff distance, needed
in Section 5.

Acknowledgements. — We thank the anonymous referees and the editors for sugges-
tions and hints which allowed us to substantially improve the paper.

2. PRELIMINARIES

2.1. Area or THE GrAPH OF A BV runcrion. — Let U C R? be a bounded open set.
For any ¢ € BV(U) we denote by Dt its distributional gradient, so that

Dy = VL2 + D9,

where V1) is the approximate gradient of ¢ and D1 denotes the singular part of D).
We recall that the L'-relaxed area functional reads as [28]

(2.1) A;U) == /U V14 |VY|?2 de+ |D%y|(U).

In what follows we denote by 9* A the reduced boundary of a set of finite perimeter
A C R? (see [4]). For any ¢ € BV (U) we denote by R, C U the set of regular
points of ¢, namely the set of points « € U which are Lebesgue points for ¢, 1(x)

JEP — M., 2024, tome 11
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coincides with the Lebesgue value of ¥ at x, and ¢ is approximately differentiable
at . We define the subgraph SG, of ¢ as

SGy:={(z,y) € Ry xR: y < (x)},
which is a finite perimeter set in U xR. Its reduced boundary in U xR is the generalized
graph Gy, == {(z,¥(z)): € Ry} of ¢, which turns out to be 2-rectifiable. If [SG] €

D3(R3) denotes the integral current given by integration over SGy, and 9[SG,] €
Dy(R?) is its boundary in the sense of currents, then

[Sy] = O[SGy]L(U x R),
with [Gy] the integer multiplicity 2-current given by integration over G, (suitably

oriented; see [26] for more details).

2.2, SETTING OF THE PROBLEM. — We fix 2 C R? to be an open bounded convex set
(strict convexity is not required) which will be our reference domain. Given two points
p,q € 09 in clockwise order, pg stands for the relatively open arc on 9§ joining p

and q.

Let n € Ny n > 1, and let {p;}7; be distinct points on 92 chosen in clockwise
order; we set p,y1 :=p1. For alli =1,...,n let ¢; be a point in p;p; 1 C IN. We set
(2.2) oPQ = pigi, 0 = Gipira fori=1,...,n,
and

n n
(2.3) oPa:=JoPq,  9°%:={ da.
i=1 =1

Since 9P Q and 999 are relatively open in 99, so are 9°Q and 9°Q. It follows that
01 is the disjoint union

00 = U {pirai} UOPQU Q.

i=1

We fix a continuous function ¢ : 9Q — [0, +00) such that
(2.4) ¢ =0 on 3°Q and ¢ > 0on 0”Q,

see Figures 2, 1. We will make a further regularity assumption on ¢: we require that
the graph G, gpq = {(z,¢(x)) : € 9PN} of ¢ on 9PQ is a Lipschitz curve in R,
foralli=1,...,n.

Remark 2.1. — The hypothesis ¢ > 0 on 9P excludes from our analysis the example
in Figure 6. We will further comment on this later on (see Section 5.1); the presence
of pieces of P where ¢ = 0 brings to some additional technical difficulties that
we prefer to avoid here. However, the setting in Figure 6 can be achieved by an
approximation argument. Namely, one considers a suitable regularization ¢, of ¢ on
0P such that ¢, > 0, and then letting € — 0 one obtains a solution to the problem
with Dirichlet datum ¢.

JEP — M., 2024, lome 11



1044 G. BerrerTing, R, Marziant & R. Scara

Remark 2.2, By definition (1.2) any o € ¥ satisfies the injectivity property in (i)
which guarantees that the sets E(o;) are simply connected (but not necessarily con-
nected). Assumption (ii) means essentially that the curves o; cannot cross transver-
sally each other, but might overlap. Notice that int(E(c;)) might be empty, the case
990 = 0;([0, 1]) being not excluded.

In what follows we will study existence and regularity of solutions to problem (1.6).
A first step in this direction is to show in Section 3 that

2.5 inf JF(s,() = inf F(s,0),
25) (s,0)eEW (s, (5,0)€Weony (5,¢)

where F is the functional in (1.7) and

Weonv := {(U,w) € Yeony X BV(Q): p =0 a.e. in E(U)},

(2.6) : .
Seconv i= {0 = (01,...,0,) € ¥ : E(0;) is convex for all i = 1,...,n}.

Notice that, by definition
(2.7) Yeonv C X and Weony CW.

Moreover, we already know that the sets int(E(o;)) might be empty, since from
assumption (i) in (1.2) we cannot exclude that o; overlaps 9YQ: Recalling that € is
convex, by (ii) and the convexity of each E(o;), this can happen, only if g;p; 11 is a
straight segment.(!) Afterward, in Section 4, we prove the existence of (0, 1) € Weony
which is a solution to (1.6) by showing that there exists a minimizer to

(2.8) F(o,0) = inf  F(s,Q).

(5,$)€Weonv

Eventually in Section 5 we prove existence of solutions to (2.8) which belong to X,,.

Remark 2.3. Exploiting the characterization of the boundaries of convex sets given
in Corollary A.3 in the appendix, we see that conditions (i), (ii) and the convexity of
E(o;) for the curves in Yoy, imply the following:

(P) Let 0 € Zcony; then for all ¢ = 1,...,n there are an injective (non-relabeled)
reparametrization of o; in [0, 1], and a nondecreasing function 6;: [0,1] — R with
0;(1) — 0;(0) < 2m, such that, setting ~;(¢) := (cos(6;(t)), sin(6;(¢))) for all ¢ € [0,1],
we have

oi(t) = g + () /0 vi(s)ds Ve [0,1],

where {(c;) denotes the length of o;.

(We will show that for a minimizer, o;([0,1]) cannot intersect P Q unless OPQ is locally a
segment (Theorem 5.1).
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3. Rebpucrion rFrom W 10 Weony

The main result of this section is contained in Theorem 3.1 where we prove the
equivalence given in (2.5). The reason being that in minimizing the functional F on W
one issue is that the class ¥ in (1.2) is not closed under uniform convergence, since
a uniform limit of elements in ¥ needs not be formed by injective curves. However,
we can always modify a minimizing sequence of curves to curves in Yoy, since the
modification can be done decreasing the energy.

The fact that the infimum of F over W coincides with that over Wy, is due to
the following geometric property: whenever a set F(o;) is not convex, we can always
convexify it reducing the energy. The procedure of convexification is described in
Lemmas 3.3, 3.4, and 3.5. Again, the convexification of E(o;) is still contained in Q
thanks to the convexity of Q.

Tueorem 3.1 (Reduction from W to Weony). — For every (s,{) € W there exists
(0,9) € Weony such that every connected component of E(o) is convex, and

(3.1) F(o,9) < F(s,¢).
In particular, (2.5) holds true. Further, if the connected components of E(() are not

convez, then the strict inequality holds in (3.1).

Remark 3.2. — Since the o;’s may overlap, the convexity of each E(o;) does not
imply in general that every connected component of E(o) = |J;_, E(0;) is convex.

For the reader convenience we split the proof of Theorem 3.1 into a sequence
of intermediate results: Lemmas 3.3, 3.4, 3.5, and the conclusion. First we need to
introduce some notation.

Let (0,9) € W. We fix an extension $ € W11(B) of ¢ on an open ball B D Q,
where we recall that ¢ is the boundary datum in (2.4). Extending ¢ in B \ Q as @,
and still denoting by ¢ such an extension, we can rewrite F(co, 1)) as

(3.2) F(o,9) = A(W; B) — |E(0)] — A(¢; B\ Q).

Lemma 3.3 (Trace estimate). — Let uw € BV(R x (0,+00)) be a nonnegative function
with compact support in an open ball B, C R?. Then

ea u(s) d3€1(5) < A(w; B (1 (R x (0, +00)) — | B,
(Rx{0})NB

where
Ep :={z € B, N(R x (0,400)) : u(z) = 0}.

Moreover, inequality (3.3) is always strict, unless u =0 a.e. on R x (0,400).

Notice that the function « is defined only on the half-plane R x (0, +00), and in (3.3)
the symbol u(s) denotes its trace on the line R x {0} (which is integrable).
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Proof. — We denote by z = (x1,r3) € R? the coordinates in R?. Set
HT :=R x (0,4+00), Z:=(B,NH")xRCR.
Let
L, :={(z,y) € Z: 1 € Ry, y € (—u(z),u(z))} C R?,

where R, is the set of regular points of u. We have, recalling the notation in Sec-
tion 2.1,

2A(u; B.NHT) = A(u; B.NHT) + A(—u; B, N H™)
(3.4) = H*(0*(ZN SG.)) +H*(9*(ZN SG_,))
=H*(ZNo*L,) +2|Eg,|.
Write B, N(R x {0}) = (a,b) x {0}. Then a slicing argument of the current [5,] yields

b
H*(ZNO*Ly,) >/ HYZ N {xy =t} NI*L,)dt

b
(3.5) :/ 5 (Z A {21 = ¢} O (spt([9] — [S—u]))) e

b
> / 2u(t, 0)dt = 2 / u(s) d3L(s),
a (Rx{0})NB,

where the last inequality follows from the following fact: If we denote by [S,], the
slice of the current [9,] on {z1 = t}, then

NGul; = 0¢t,0,u(t,0)) = O¢t,5,,0) for a.e. t € (a,b),

where s; > 0 is such that (t,s;) = B, N ({t} x R"), and in writing ¢, 0) We are
using that v has compact support in B,. This can be seen, for instance, by approxi-
mating® u with a sequence of smooth functions. Therefore

O([Sully, = [G-ully) = d(t.0,u(t,00) = O(t,0,—u(t.0)) for a.e. t € (a,b).

This justifies the last inequality in (3.5) and, using (3.4), the proof is achieved. Notice
that, from the last formula, it follows that the last inequality in (3.5) is strict if
[Sul, — [S-u], is not the straight segment connecting (¢,0,u(t,0)) and (¢,0, —u(t,0))
on a set of positive H'-measure. This implies that inequality in (3.3) is an equality if
and only if u = 0 a.e. on HT. O

We now turn to two technical lemmas needed to prove Theorem 3.1. We introduce
a class of sets whose boundaries are regular enough to support the trace of a BV
function. Precisely we say that an open subset of R? is piecewise Lipschitz if it can
be written as the union of a finite family of (not necessarily disjoint) Lipschitz open
sets. Using that, for a Lipschitz set E C R?, the symmetric difference (0*E)AJE

(2 With respect to the strict convergence of BV (B, N (R x {0})), which guarantees the approxi-
mation also of the trace of u on 9(B, N (R x {0})).
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has null H! measure, one can see®® that the same property holds also for a piecewise
Lipschitz set. In particular, by (2.1) if € U is a piecewise Lipschitz subset of a bounded
open set U C R?, then

(36) AwT) = AwiV) + [t = ol
where 1T (respectively 1~) denotes the trace of ¥V (respectively ¥ (U ~\ V))
on JV.

Lemma 3.4 (Reduction of energy, I). — For N > 1 let Fy,...,Fyn be nonempty
connected subsets of Q, each F; being the closure of a piecewise Lipschitz set, with
F,NF; =@ fori,je{l,...,N}, i#j. Let ¢ € BV(B) satisfy

N
(3.7) Yv=0 aein G:=UF, and v=9¢ ae in B~\Q.
i=1

Then, for any i€ {1,...,N},
(3.8) AW B) —|Gi| - A7 BN Q) < A(Y; B) — |G| — A(Y; BN Q),

where

0 7 Fy),
(3.9) Gr = F;Uconv(F;) and o} := in conv(F;)
e 1 otherwise.

Further, inequality in (3.8) is strict unless ¥ = ¢} a.e.

Proof. — Fixi e {1,...,N}. By the convexity of Q, we have ¢ = 1} in B~ Q, hence
it suffices to show that

AW B) — |GF| < A(y; B) — |G].

We start by observing that we may assume F; to be simply connected. Indeed, if not,
we can replace it with the set obtained by filling the holes of F;, and by setting ¢
equal to zero in the holes.(®® This procedure reduces the energy since F} is piecewise
Lipschitz, and any hole H of it has the property that the external trace of ¢ L (B~ H)
on JH vanishes.

We have that (Oconv(F;)) N\ OF; is a countable union of segments. We will next
modify v by iterating at most countably many operations, setting ¢» = 0 in the region
between each of these segments and OFj;.

(3)The conclusion HL(8*V)AOV) = 0 for a piecewise Lipschitz set V = X, A;, with A;
Lipschitz open sets, can be proved by induction on m, using also the following fact: If B; and By are
open sets with H!((0* B;)AdB;) = 0 for i = 1,2, then B = B; U By satisfies H((0* B)AdB) = 0.
This follows by the identity d(B1 UBz) = ((8B1) ~ B2) U ((8B2) ~ B1) U ((8B1) N9dBz2), which shows
that 9(B1 U B2) is a H1-measurable subset of §B; U dBs.

(D1f H is a hole of F; and it happens that F; C H for some j # ¢, we redefine F; as the union of
it with H, and set F; = @. This procedure does not invalidate the following argument.
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Step 1: Base case. Let I be one of such segments, and U be the open region enclosed
between OF; and [. We define ¢’ € BV (Q) as
o = 0 in U,
1) otherwise.

We claim that
(3.10) A’ B) — |G'| < A(Y; B) — |G,

with strict inequality unless 1’ = 1) a.e., where G’ := G U U. To prove the claim,
we introduce the sets

H :=int(F;uU), V=Un(U F).
JF#i
Note that H is a piecewise Lipschitz set. By construction

G’ = |H|[+| U Fy| - V],
i

and (3.10) will follow if we show that
A(W'sB) — |H| < A(¢; B) = [U Fj| + | L#JVFJ\ —|VI=A{;B) - |[F; UV,
J J#i
with strict inequality unless ¢' = 1) a.e. in Q. Since |H| = |F; UV|+ |U \ V], this can
also be written as
AW B) S AW B) + |[UN VI,

In turn A(¢'; B) = A(Y;U) +A(¢'; B\ U) (and similarly for 1), so we have reduced
ourselves with proving

(3.11) A@SU) <AW;U) +|[UNV.
In view of the definition of 1’ which is zero in U, we have(®
AW D) = [1071d3¢ + U
l

(T denoting the trace of ¢|_(B \ U) on the segment [) implying that (3.11) is
equivalent to

/lwﬂdﬂfl < AW T) — V.

Finally, if 1y denotes the trace of ¥ LU on I, we write A(1;U) = A(;U N 1) +
Ji 1™ — ¥y |dH?!, and the expression above is equivalent to

(3.12) /l ! < /l Wt — uldd + AT 1) — V],

We now prove (3.12). Fix a Cartesian coordinate system (z,2) so that [ belongs to
the zi-axis and U belongs to the half-plane {z3 > 0}. Let u be an extension of

(5)We use the precise integral formula (3.6) thanks to the boundary regularity of U, where we
have OU \ 1 C OFj;.
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in R x (0, 4+00) which vanishes outside U. Lemma 3.3, applied to v with the ball
B, = B, implies

/|¢U|d9{1_/{ } w d < A BAR x (0, 4+00))) — | En| <A@ T~ 1) — V.
l x2=0}NB

Here the last inequality follows by recalling that ¢ (and thus «) vanishes on V. From
this and the inequality [, [ |[dH! < [} [T —y|dH' + [, [¢hy|dH* the proof of (3.12)
is achieved, so that (3.10) follows. Notice that in applying Lemma 3.3 the inequality
holds strict when v’ does not coincide with ¢ a.e.

Step 2: lterative case. We set d(conv(F;))\OF; = U;‘;l l; with {; mutually disjoint
segments. For every h > 1 we define the pair (¢, G,) as follows:
Cifh=1
0 in Uy, _
Py = e and G{:=GUU.,
1 otherwise,

where U; is the open region enclosed between OF; and l;. We also define Hy :=
int(FZ- U Ul);
—ifh>2

0 in U _
by 1= o and G, :=Gy_1 UT},
Yp_1 otherwise,

where U}, is the open region enclosed between 0Hp_1 and [, and
H;, = int(Hh,1 U Uh).

By construction each Hj, is simply connected and piecewise Lipschitz, H, C Hp41,
Gh C Gpy1 C Q for every h > 1, and moreover

(3.13) Jim [Hy] = feonv(F)l, Tim |Gl =[G,

where G} = J;—, G, = Uj# F; U conv(F;). For any h > 2 we apply step 1, and

after h iterations we get

A(bn; B) = |Gr| < A(Yn—1; B) — |G| < -+
<

A
3.14
(344 Al B) ~ 1G1] < A B) — |G
In particular,
|Dyn|(B) < A(hn; B) < A(h; B) +[Grp \ Gl < A(; B) + [\ G,

for all h > 1, and then we easily see that, up to a subsequence, 1, — ¢ in BV (B),
where 1} is defined as in (3.9). Now the lower semicontinuity of A(-; B) yields

(3.15) lim inf A(¢p, B) = A(Y]; B).
h——+o00
Finally, gathering together (3.13)—(3.15) we infer
AW B) — |G| < liminf A(¢y; B) = lim |G| < A(¢; B) — |Gl
h—+o0 h—+o00
Again we have the strict inequality unless 1, = 1,1 for all i a.e. in €. This concludes
the proof. 0
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Lemma 3.5 (Reduction of energy, II). Let N > 1, Fy,...,Fn,G and ¢ be as in
Lemma 3.4. Then there exist n € {1,..., N} and mutually disjoint closed convex sets
Fy, ..., F5 C Q with nonempty interior such that

(3.16) Gc UF=a,
i=1
and
(3.17) A@W*; B) = |G*| = A(y*; BN Q) < A(; B) — |G| — A(y; BN Q),
where
0 inG*
(3.18) Pt = { e
1 otherwise.

Finally, inequality in (3.17) is strict unless ¥ = ¢* a.e.

Proof’
Base case. — If N = 1 we set F; := conv(F}) = G* and the thesis follows by
Lemma 3.4. Suppose N > 1. We take the sets

N
(3.19) conv(Fy), Fy,...,Fy and G7:= | F;Uconv(F),
i=2

1=

and let
. 0 1in GT7,
! 1 otherwise.

Then by Lemma 3.4,
(3.20) AT B) — |G| = A(¥1: B\ Q) < A(Y: B) — |G| — A(¥; B\ Q),

with strict inequality unless ¥} = v a.e.

[terative case. Let m, k, h be natural numbers such that 1 < k& < m < N and
1<h<2N—1,andlet Fy,..., Fy , be closed subsets of Q with nonempty interior
that satisfy the following property:

(1) Fip,...,Fyp are convex;

(2) BinNFjp=0foralld,j#k i#j,4,7=1,...,m.
Notice that for h = 2 and m = N the sets

FLQ = COHV<F1)7 F2’2 =I5, ..., FN72 = Fly,

satisfy (1), (2) with k& = 1 by the base case (so the iterative step can be applied to
these sets).

We then set Iy p, :={1<i<m,i#k: F,,NFpp # @} U I, =@ and k =m,
we are done, otherwise we construct a new family of sets using the following algorithm,
distinguishing the two cases (a) and (b):
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(a) if I, = @ and k < m we define the sets

Fi h fOr 7 # k + 17 .

Fipy1 = ’ fori=1,...,m

+ B ) ) )
conv(Fyt1,n) fori=k+1,

and G}, = Uiss Fint1s
(b) if Iy, # @, up to relabeling the indices, we may assume that
Iiop = {kn1 < i< kpo}~ {k},
for some kp, 1 # kp2 with 1 < kp 1 <k < kp2 < m, so that
{Lccoomi~{k} NI ={1<i<kp1—1}U{kpa+1<i<m}

Note that if k1 = 1 then {1 < i < kp1 — 1} = @, and similarly if kj 2 = m then
{kn2+1<i<m}=g. Then we set

Fi,h fOI"iZl,...,kh’l—l,
Fipy1 = ¢ conv(Fy 5 U (Ujelk,h Fipn)) fori=kpa,
Fiikyo—kpa,h fori="kp1+1,....m—kpa+kni,

and G}, == U~ PR T

In both cases (a) and (b) a direct check shows that the produced sets satisfy proper-

ties (1) and (2) with m, k+ 1, h+1 and m — kp2 + kp1, kn,1, h + 1 respectively.
In both cases we also define the function

N 0 in G},
wh+1 = { h+1

v}, otherwise.

Then, by induction, for all 1 < h < 2N — 1 we use Lemma 3.4, and in view of (3.20)
we infer

A(7/}}:+1EB) - |G2+1‘ *AW);+1§B ~ Q) <Ay B) — |Gh| — AWy B \ﬁ)
< A(Y; B) = |G| = A(¥; BN\ Q),
with strict inequality unless ¢y | = ¢} for all h a.e. in Q.
Conclusion. — If N =1 it is sufficient to apply the base case. If instead N > 1 after
a finite number h* < 2N — 1 of iterations we obtain a collection of mutually disjoint

and closed convex sets with nonempty interiors Fy := F p«,...,Fs = Fj; p~ with
1 <7n < N such that

=1
and
AW B) = |G*| = A" B\ Q) < A(Y; B) — |G| = A(¥; B\ Q),

with

0 in G*,

Y= = .

1 otherwise,

with strict inequality unless ¢¥* = ¢ a.e. |
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Proofof Theorem 3.1. — We start by observing that (2.5) readily follows from (3.1).
Indeed, this implies

inf F(o,¢) < inf F(o,v).
(va)ewconv ( ’(/J) (U,l/})EW ( w)

Whereas from (2.7) it follows

(a,%few Fev) < (o,w)lgwﬁzm Flo )
Thus, we only need to show (3.1). Take a pair (7,) € W; we suitably modify (7, 1))
into a new pair (o, %) € Weony such that every connected component of E(o) is convex
and
F(o,9) < F (@, 1),
and this will conclude the proof. Once again we notice the that strict inequality holds
unless 1) = 1) a.e.

Let E(71),...,E(d,) be the closed sets with mutually disjoint interiors corre-
sponding to & (as in (ii) before (1.2)) and let G := |J;_, E(5;). Let Fy,..., Fy be the
(closure of the) connected components of G, N < n, which are piecewise Lipschitz.
By Lemma 3.5 there exist 1 < n < N and Fl, e ,ﬁ/ﬁ C Q mutually disjoint closed
and convex sets with nonempty interior satisfying (3.16), (3.17) and (3.18). There-
fore, by construction, for every i = 1,...,n, ¢; and p;+1 belong to f'j for a unique
j€{l,...,n}. For every j =1,...,7 we denote by

Q15 Djr4+15 - - - 7anj apjanrla

the ones that belong to Fj Then we conclude by taking (o,1) € Weony with o =
(o1,...,0n) and

o ([O 1]) _ 45 Pjr+1 for k= 1,...71’Lj — 1,
e OF; ~ (UZil 95, Q) U (UZSI %Pjﬁl) for k=mnj,
for every j =1,...,n and ¢ := ¢*. |

4. EXISTENCE OF MINIMIZERS OF F IN Weony

The main result of this section reads as follows.

Tueorewm 4.1 (Existence of a minimizer of F in Weony). — Let F and Weony be as in
(1.7) and (2.6) respectively. Then there is (0,1) € Weony such that

4.1 F(o,) = min  F(s,().

(4.1) (0,%) eomn (s,0)

Moreover, every minimizer (o,v%) of F in Weony is such that every connected compo-
nent of E(o) is convez.

As a direct consequence of Theorem 3.1 and Theorem (4.1), we have:
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CoROLLARY 4.2. Let (0,1) € Weony be a minimizer as in Theorem 4.1. Then (o,1)
is also a minimizer of F in the class W. Moreover, every minimizer (o,v¢) of F in W
is such that every connected component of E(o) is convex.

We prove Theorem 4.1 using the direct method. To this aim we need to introduce
a notion of convergence in Weony .

Derinition 4.3 (Convergence in Weony ). We say that the sequence ((0)g, Vr)r C
Weonv, with () = ((61)k,-- -, (0n)k), converges to (o,%) € Weony if:

(a) ((g3)r)z[O0, 1]]] converges to (0;)3[[0,1]] in the sense of currents in Dq(R?),
foralli=1,...,n
(b) (¥r)r converges to 1 weakly* in BV (Q), i.e., ¥y, — 1 in LY(Q) and Dy — D3

weakly* in Q0 as measures as k — +0o.

In Definition 4.3 (0;)3[[0, 1]] denotes the push-forward by o; of the 1-current given
by integration on the segment [0, 1], oriented in a standard way (see [32] for details).

In the next lemma we show a compactness property of Weeopny. In particular, given
(0)r C Econy With equibounded energies, for all i = 1,...,n, up to subsequences, a
(not-relabeled) reparametrization of (o), converges uniformly to some 7;, and there is
a parametrization o; of the support of (7;)[[0, 1]] such that ¢ = (o1,...,05) € Xconv-
This, together with a uniform bound on the lengths of (o;)x, implies the convergence
of the push-forwards as currents. Notice that (0;)4][0,1]] is invariant under repara-
metrization of o;.

Lemma 4.4 (Compactness of Weony )- Let ((a)k,zbk)k C Weonv be a sequence with
supy, F((0)k,1x) < +oo. Then ((o )k,wk)k admits a subsequence converging to an
element of Weony -

Proof. — We divide the proof in two steps.

Step 1: Compactness of (o). For simplicity we use the notation o;, = (0;)x for
every k € Nand ¢ € {1,...,n}. By condition (P) in Remark 2.3, for every k € N and
i € {1,...,n} there exists a non-decreasing function

Oir: [0,1] — R, i (1) — 0;(0) < 2m,

such that, for a reparametrization & of oy,

ik (t) = ¢ +£(Uik)/o vir(8)ds, ik (t) := (cos (1), sinb;(t)) Ve € [0,1],

and with 7;,(1) = p;+1. We observe that

1
(42) o) = [ lolylo)lde <3¢ 00),
0
since the orthogonal projection

Il o0~ 8?(2 — E(O’ik)
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is a contraction and H!(9Q \ 9YQ) < H!1(9Q). Hence, up to a (not relabeled) sub-
sequence, £(c;) — m; € RT as k — +o0o. The number m; is positive since, for all k
and i, we have £(0;%) = |¢; — pit+1| > 0. Moreover,

1 1
| 1ewiae= [ oytorin < om
0 0

hence, up to a not relabeled subsequence, 6y; — 6; in BV (0,1) and 6; is non-
decreasing with 6;(1) — 0;(0) < 27. Furthermore y;; — =; in BV((0,1); R?) with
~i(t) = (cos(0;(t)), sin(f;(¢))). Thus, arguing as in (A.2) and using (4.2), we get
Gik — 0y in WHL([0,1];R?), where

(4.3) oi(t) :==q; + mi/o vi(s)ds = q; + E(Ui)/o ~i(s)ds.

Thus limy_, o 0% = 0; uniformly, hence we also conclude that &; takes values in €.
Since by (H3)

du(E(oi), E(oin)) = dua(0E(0i), 0E(oin)) < ||oik — oinllee

for all h,k > 0, the uniform convergence of (7;;) implies that (E(c;1))x is a Cauchy
sequence with respect to the Hausdorff distance. Hence, by (H2) there is K; € X such
that dpy (E(o), K;) — 0, and K is also convex by (H5).

We now show that o; is injective, unless a pathological case that might happen
only if 94 is a straight segment.(® Notice that, if 999 is not straight, K; must have
nonempty interior, since it contains the region enclosed between g;p; ;1 and 999).

First observe that 7;([0,1]) C 0K;. Assume by contradiction that o;(t1) = ;(t2)
for some t1,ts € [0,1], t1 < to. Since K; is convex, the curve ;L [t1, t2] is closed and
its image is contained in OK;. If ;L[t1, t2] is constant and equals to 7;(t1) we get a
contradiction with (4.3) and the fact that |y;| = 1 a.e. in [t1, t2]. Hence there is a point
t3 € (t1,t2) such that 7;(t3) # G;(t1). Let €5, and %, denote the half-lines in R? with
endpoint 7;(¢3) and passing through ;i (¢1) and ;5 (t2), respectively. Since E(o;) is
convex, we infer that 7;x([0,¢1]) Uk([t2, 1]) is contained in the closed angular sector
of R? enclosed between ¢, and ¢5,. Since (G;;) converges uniformly to 7;, we have
oik(t;) = 0i(t;) for j = 1,2,3, and 7;(t3) # (t1) = 0:(t2), so we easily conclude that
7. ([0,t1]) U G ([t2, 1]) must be contained in the line passing through &;(t1) = ;(¢2)
and 7;(t3). As a consequence also K, being convex, is a segment contained in such
a line, and has empty interior. Hence this leads to a contradiction if 99Q is not a
straight segment. In this case we set o; := 7;.

If instead 99Q) is a straight segment, it might happen that the image of &, is
contained in a line, which must be the one passing through ¢; and p; 1. Since uniform
convergence of (7;;) and the fact that ¢(o;,) — €(6;) imply that (G,%)4[[0,1]] =
(oir)g[[0, 1]] — (24)4110, 1]] as currents, and since 9(o;x)4[[0, 1]] = dp,,, — dq, for all k,

Pi+1

(6)This case corresponds to E(o;) a possibly curvilinear triangle with vertices p;, ¢;4+1 and a
third point r, € Q converging to a point 7 € 92 which is on the same line as p;, g;4+1, but outside
the segment p;qi+1-
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also 0(7;)3[[0,1]] = 6p,,, —dq,.- We conclude that (o;)4[[0, 1]] is the integration over the
segment ¢;p;+1, and hence there is a Lipschitz injective curve o; which parametrizes
¢;Di+1 such that

(0)4[[0, 1] = (20)4[[0,1]], and  (oa)4[[0, 1]] — (o) [[0, 1]].

We next show that F(o;) is convex for any ¢ € {1,...,n}. If o; parametrizes the
segment G;p;+1 then E(o;) is that segment, and there is nothing to prove. Assume
then that 0;([0, 1]) # @piz1. As shown above, the uniform limit o; of (Gy) is injective.
We will show that K; = F(0;). Indeed, the uniform convergence of (7;;) yields

lim dg(dE (o), 0E(0;)) = 0.

koo
From (H3) we get
du(0K;,0E(0;)) < duy(0E(oik), 0K;) + du (OE (o), 0E(0;))
=dy(E(ow), K;) + dg(0E(04),0E(0;)) — 0 as k — +o0.

Thus 0K; =0F(0;), so K;=FE(0;) and the convexity is shown. This implies 0 € ¥¢ony,
and since (o4)4[[0, 1]] — (04)4[[0, 1]] as currents, the compactness of (¢) is achieved.

Step 2: Compactness of (¢y). — Setting Fy, = J;—, E(oux) we have
| DY () < A(Wr; ) < F((0)r, ) + |[Fi| S C <400 VE >0,

where we used that |Fy| < |Q|. Therefore, up to a subsequence, ¥y — v in BV ()
and almost everywhere in € as k — +o00. To conclude it remains to show that ¢ =0
in E(o) = J, E(0;). If for some i € {1,...,n} it happens that 99(2 is straight and o;
is the straight segment @;p;11, then F(o;) has empty interior, and so there is noth-
ing to prove. Otherwise, for the other indices, by limy_ 1o dg(E (o), E(0;)) = 0,
property (H6) yields

if x€int(F(o;)) then =z € E(oy) for k sufficiently large,

and hence, since limg_, o ¥ = ¥ a.e. in Q, we infer ) = 0 a.e. in E(0). O
Remark 4.5. — The previous proof shows a slightly stronger result: under the assump-
tion of Lemma 4.4, for every i = 1,...,n, we can find o; with o = (01,...,05) € Zconv,

o; € Lip([0,1]; ), and reparametrizations o;; of o;; such that
(@0)3[[0,1]] = (o4)4[[0, 1]],
0ix — 0; uniformly on [0, 1].

Moreover, (ox)3[[0, 1] converges to (o:)z[[0,1]] in the sense of currents in D;(R?).
Finally E(o;;) = E(0;) converges to E(d;) = E(o;) in (K,dy), and 7; = o; unless
Q) is a straight segment. In the latter case it might happen that ; is not injective,
but this happens only if 7;([0,1]) is a segment, o; is a parametrization of g;p;11, and
E(0;) = @ipiv1-
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REmARK 4.6. We have also shown that if (6;5) converges uniformly to o; € Ycony
for some i = 1,...,n then
lim dH(E(O'ik)7E(O'i)) =0.
k— 400

Lemma 4.7 (Lower semicontinuity of F in Weony). — Let ((J)k,u)k)k C Weonv be a
sequence converging to (o,1) € Weony. Then

F(o,v) < liminf F((o)k, V).
k— oo
Proof. — By a standard argument [28], the functional
P € BV(Q) — A(; Q) + / |vp — |dH*
o0

is L'(2)-lower semicontinuous. We now show that the map o € Seony — |E(0)| is
continuous. Let (0)r C Zconv, 0 € Zconv, and suppose that ((0;))3[[0, 1]] converges
to (07)[[0,1]] in D1 (R?) foralli = 1,...,n as k — +o0. Set Fy, := |J;_, E((0:)x) and
recall that E(o) = |J;—, E(0;). Thanks to Remark 4.5, we can always assume that
there are reparametrizations &;; of o;, such that &;; converges uniformly to o; with
(@:)¢[[0,1]] = (04)¢[[0,1]]. Let us suppose first that o; is injective for all i = 1,...,n,
and so ¢; = 0;. By Remark 4.6 limj,— 1 oo dg(E((04)k), E(0;)) =0 foralli=1,...,n
and therefore dy (F, E(0)) =: g — 0.

By invoking (H7) we have E(o) C (F)Z, . Moreover, since dg ((Fr)Z, , E(0)) < 2¢g,
we get (Fi)l C (E(0))3, , and so

E —

|E(o)] < [(Fo)d, | < (E(0))5;

2ep 1
This implies
lim sup |Fy| < limsup |(Fy)7 | < |E(0)|.

k——+oo k—+oco

The converse inequality is a consequence of Fatou’s lemma and (H6), indeed

|E(0)| < / liminf xp, (z) dx < liminf/ XF, () de = liminf | F}|.
Q Q k— 400

k—+oo k—+oc0

If instead &; is not injective for some ¢, we have ; € Lip([0, 1]; Q) with (7;)4[[0, 1]] =
(0:)¢[[0,1]], and we are in the case that E(c;) has empty interior (see Remark 4.5).
Thus E(o;;) = E(0;;) converges to a segment K; 2 E(c;) in the Hausdorff distance.

Since |K;| = 0, the thesis of the lemma follows along the same argument above
replacing the symbol E(o;) by K. a

Proofof Theorem 4.1. — By Lemma 4.4 and Lemma 4.7 we can apply the direct
method and conclude that there exists (0, 1) € Weony such that (4.1) holds. Moreover,
since Weony € W by Theorem (3.1) we can choose (o,1) such that every connected
component of E(c) is convex. O
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5. REGULARITY OF MINIMIZERS

In this section we investigate regularity properties of minimizers of F. We recall
that our boundary datum ¢ satisfies the conditions in (2.4), and @ € W11(B) denotes
a fixed extension of ¢ in the open ball B O €. The main result here reads as follows.

Turorem 5.1 (Structure of minimizers). Every minimizer (o,v) € Weony of F
in W, namely

F(o, ) = (Srgigw F(s,0),

satisfies the following properties:

(1) Each connected component of E(c) is convex;

(2) 9 is positive and real analytic in Q. E(o0);

(3) If 0P is not a segment for some i = 1,...,n, then OE(c) N OPQ = @, ¥ is
continuous up to OPQ, and ¢ = p on OPQ;

(4) If OPQ is a segment for some i = 1,...,n, then either OE(c) N 0PN = @ or
OE(0)NOPQ = 0P Q. In the first case v is continuous up to OPQ and 1 = ¢ on OP Q.
Moreover, there is a minimizer (o,1) € Weony such that

(5) QN OE(o) consists of a finite number of disjoint analytic curves, and v is
continuous and null on OE(a) ~ 9PQ.

Remark 5.2, — If 9PQ is a straight segment for some i = 1,...,n, nothing ensures
that OF(0) N 0PQ = @. However, if this intersection is nonempty, then necessar-
ily 9PQ c OFE(0). The prototypical example is given by the classical catenoid, as
explained in the introduction (see Figure 2) where, if the basis of the rectangle Q = Ry
is large enough, a solution % is identically zero, and 9PQ C dE(c). This also explains
why in point (5) of Theorem 5.1 we write dE (o) \ 9P,

A consequence of Theorem 5.1 is that a regular solution 1 belongs to W11(Q) and,
if Q2 is strictly convex, it also attains the boundary values. In particular, Theorem 5.1
implies Theorem 1.1.

For the reader convenience we divide the proof in a number of steps.

Levva 5.3, — Fvery minimizer (0,1) € Weonv of F in W satisfies (1), (2) and ¢ = ¢
on OPQ N OFE(o).

Proof. — Ttem (1) follows by Theorem 3.1. By [28, Th. 14.13] we also have that ¢ is
real analytic in Q \ F(c). Together with the strong maximum principle [28, Th. C.4],
this implies that, in 2 \ E(0), either ¢ > 0 or ¢» = 0. On the other hand, since {2 is
convex we can apply [28, Th.15.9] and get that v is continuous up to d°Q \ IE(0);
in particular

(5.1) p=¢p>0 ondPQ~IE(0),

which in turn implies ¥ > 0 in Q \ E(0) . O
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Lemma 5.4. Let T C R3 be a rectifiable, simple, closed and non-planar curve sat-
isfying the following properties:

(1) T C O(F x R) for some closed bounded convexr set F C R? with nonempty
interior;

(2) T is symmetric with respect to the horizontal plane R? x {0};

(3) There are a nonempty relatively open arc pg C OF with endpoints p and q, and
f€C%pqU{p,q};[0,+0)) such that f is positive in pq and

(5.2) I'n{zs >0} =Gy U ({p} x [0, f(p)]) U ({q} x [0, f(a)]).

Let S be a solution to the classical Plateaw problem for T', i.e., a disk-type surface
minimizing area among all disk-type surfaces spanning I'. Then:

(1) Bpq = SN (R? x {0}) C F is a simple analytic curve joining p and q with
Bp,q NOF = {p>Q};

(2) S is symmetric with respect to R? x {0};

(?i) The surface ST := SN {x3 > 0} is the graph of a function ¢ € WHY(U, ;) N
CO'(Up.q ~{p,q}), where U, , C int(F) is the open region enclosed between pg and
Bp.q- Moreover, ¢ is analytic in U, 4, and if f(p) =0 (resp. f(q) = 0) then ¢ is also
continuous at p (resp. at q);

(4') The curve Bpq is contained in the closed conver hull of T', and F \ Up 4 is
conver.

Remark 5.5. — If the function f in (3) is such that f(p) = f(¢g) = 0 then (5.2)
becomes ' N {z3 > 0} = § ¢- For later convenience we prove Lemma 5.4 under the
more general assumption (3).

Proofof Lemma 5 .4. Even though several arguments are standard, we give the
proof for completeness.

Step 1: Bp.q Us a simple analytic curve joining p and q. Let B; C R? be the open unit
disk centered at the origin. Let ® = (®;, @5, ®3): B; — S C R? be a parametrization
of S with ®(0B;) = T, that is harmonic, conformal, and therefore analytic in By,
continuous up to dBj. Further, by (1), ® is an embedding (see [34] and also [22,
p. 343]).

By assumption (5.2) we have {w € dB;: ®3(w) = 0} = {®71(p,0),®7(q,0)},
so that ®3 changes sign only twice on dB;. By applying Rado’s lemma (see, e.g.,
[22, Lem. 2, p. 295]) to the harmonic function ®35 we deduce that V@3 # 0 in By and
in particular {w € B;: ®3(w) > 0} and {w € B;: ®3(w) < 0} are connected, and
{w € By: ®3(w) = 0} is a simple smooth curve in By joining ®~!(p,0) and (g, 0).
By the injectivity of ® we have that SN (R? x {0}) = ®({w € B;: ®3(w) =0}) is a
simple analytic curve joining p and gq.

Step 2: S is symmetric with respect to the horizontal plane R* x {0}. — By step 1 the
sets {w € By: ®3(w) > 0} and {w € B;: ®3(w) < 0} are simply connected and the
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two surfaces
St :=®({w € By: ®3(w) > 0}), S~ :=®({w € By: ®3(w) <0})

have the topology of the disk. We assume without loss of generality that 3?(S*) <
H2(S7). Let

Sym(St) := {(«,23): (2, —x3) € ST}, §:= 5T USym(SH).
Then S is a symmetric surface of disk-type with S =T and
H2(S) = 2HZ(ST) < H2(SH) + H2(S7) = H2(S).

In particular, Sis a symmetric solution to the Plateau problem for I'. Further S = S
on a relatively open subset of S; hence, since they are real analytic surfaces, they
must coincide, S = S.

Step 3: St is the graph of a function Ve WL (U, )N C°(Upq ~ {p,q}). To show
this it is enough to check the validity of the following

Cramm. — Ewery vertical plane 11 is tangent to int(S) at most at one point.

We prove the claim arguing by contradiction as in [8, p.97], that is we assume
there is a vertical plane II tangent to int(S) at 2’ and 2" with 2’ # 2”. We define
the linear map d,(z) := (zr — 2’) - v with v a unit normal to II, so that clearly
I = {z € R d,(z) = 0}. Since F is convex, II N (OF x {0}) contains at most
two points. By properties (1)—(3) each of these points is either the projection on the
horizontal plane of one or two points of II N T', or the projection on the horizontal
plane of one of the vertical segments {p} x [0, f(p)] and {q} x [0, f(¢)]. Hence INT
contains either: (a) at most two points and a segment, (b) two segments, (c) four
points. Without loss of generality we restrict our analysis to the last case (the others
are simpler to treat), namely we assume that there are four (clockwise ordered) points
wi,...,wg € OBy such that IINT = {®(wy),...,P(wy)}, that is d, o P(w;) = 0 for
1 =1,...,4. We may also assume d, o ® > 0 on wiws U wswy and dy, o ® < 0 on
wow3 U waw;. Here w;w; denotes the relatively open arc in dB; joining w; and w;,
for i,5 € {1,...,4}. Notice that the function d, o ®: B; — R is harmonic in By,

continuous up to dB; and vanishes at wy, ..., wy; hence, by classical arguments [35,
§437] we see that the set {w € By: d, o ® = 0}, in a neighbourhood of w’ := ®~1(a2’)
(respectively w” := ®~1(2”)), is the union of a number m > 2 of analytic curves

crossing at w’ (respectively w’). Thus near w’ and w” the set {w € By: d,o®(w) > 0}
is the union of at least two disjoint open regions A; 1, A; 2 and Ag 1, Az o respectively
such that Ay 1 NA; 5 = {w'}, Ao 1 N Az = {w”}. Moreover, each A; ; belongs either
to the connected component of {w € B;: d, o ®(w) > 0} containing w;ws, or to the
one containing wsw,. Up to relabeling the indices we have two possibilities.
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Case 1: Ay 1 and Ay 2 belong to the same connected component containing WiWs. Then
we can find two simple curves a;, ap contained in A;; and A; 2 respectively, that
connect w’ to a point in Ww;w; and such that the region enclosed by the curve a; U g
intersects {w € By: d, o ®(w) < 0}. Since d, o ® > 0 on a3 U ay by the maximum
principle we have a contradiction.

Case 2: Ay 1 and As 1 belong to the connected component containing wyws while Ay o and

Ay o belong 1o the connected component containing wzwy. — Then we can find four
simple curves «; ; (with 7,5 = 1,2) contained respectively in A, ;, such that o

(respectively as 1) connects w’ (respectively w”) to a point in wjws and a2 (respec-
tively o) connects w’ (respectively w”) to wswy. Then the region enclosed by the
curve |J; ; ai,; intersects {w € Bi: dy o ®(w) < 0}, while dy o ® > 0 on |J; ; i j,
which again by the maximum principle gives a contradiction.

Thus the claim follows. Now, by step 2, the claim readily implies that int(S™) has
no points with vertical tangent plane and hence int(S*) is the graph of a function 7:2;
defined on U, ,. Since ’(Z must minimize (locally) the area functional, it is also real
analytic in U, ;. Moreover, the claim also implies that 1Z must vanish on 8, , and
that it must attain the boundary values on pq. If f vanishes on p or ¢, then also the
continuity of @Z at these points is achieved.

Step 4: The curve By, q is contained in the closed convex hull of T, and the set F . Uy, 4 is
conyex

Let 7(I') C OF be the projection of I onto the plane R? x {0}. By [22, Th. 3,
p. 343] the relative interior of S is strictly contained in the convex hull of T, thus in
particular the curve 3, , (respectively B, 4 \ {p, ¢}) is contained (respectively strictly
contained) in the same half-plane (with respect to the line pg) that contains =(T).

Now, assume by contradiction that F' \ U, 4 is not convex. Then there are p’, ¢’ €
Bp,q With the following properties:

— The open region U’ enclosed by £, 4 and the segment p'q’ is nonempty and con-
tained in Up 4;

— the points p and ¢ and the set U’ lie on the same side with respect to the line
containing p/q’.
Let then dy: R?® — R be an affine function that vanishes on the vertical plane
containing p’q’ and is positive in the half-space W containing p, ¢ and U’. We now
observe that TN W is the union of two connected subcurves I'; and fg, containing p
and g respectively. As a consequence @fl(fl) = WLws and <I>’1(f2) = Wwawy for some
w1, we, w3, wy € By (clockwise oriented).

On the other hand since dy > 0 on U’ we can find ¢’ € U’ \ p/q’ such that

dy o ®(@ () =dw(t') >0

with ®~1(#') € Bj. Once again by the harmonicity of dy o ®: B; — R we deduce
the existence of a curve a C {w € By: dy o ®(w) > 0} joining ®~1(¢') either to
wiwsy or wzwy. Hence ®(a)) C ®(By) is a curve joining ¢’ either to I'y or Ty, say T';.
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This implies that the projection m(®(«)) of ®() onto the horizontal plane R? x {0}
is a curve contained in U, , that connects ¢’ to 7(T1). So in particular, the curve
7(®(a)) cannot be included in the half-space W. But this contradicts the fact that
a C {w € By: dw o®(w) > 0} (this is because the values of dy at a point = and 7 (x)
are the same). O

We need also the following technical results on the distance function dg from a
convex set F. Recall the definition of EX given in (H7) in the appendix, for ¢ > 0
and E C R2.

Levva 5.6. — Let F C R? be bounded, closed and convex. Then

Adp € LE (RPN F)NLY(B\F)

loc

for every ball B with FF CC B.

Proof. — By [18, Th.3.6.7, p.75] it follows that dp € C\2'(R2 \ F), hence V2dp €

loc

L (R? N F;R?%2). Therefore we only have to check that Adp € LY(B \ F). Let

loc

n > 0 be fixed sufficiently small. Select (fi)ren C CL(R?;R?) such that fr, — Vdp
in Whi(B < Fn+/2) as k — +o0. By the divergence theorem we have

(5.3) / divfy dr = / fi - vy dIH,
B~F;f dBUA(F;})

with v, the outer unit normal to 9B U d(F,"). By taking the limit as k — co we get

(5.4) lim divfy dx = / Adp dz,
k—+o0 B\FTJ,r B\FnJr
and
(5.5) lim fr - vy dH = Vdg v, dH*,
k—=+co Japua(F;) OBUA(F;)

where (5.5) follows by using that d(F,!) is of class C*+! and hence f; L(OBUJ(F,})) —
VdrplL(0BUA(F,)) in L'(OBUA(F,!)). Since d is convex we have Adp > 0 a.e.
in R? \ F, moreover |V dg| =1 in R? \ F; then gathering together (5.3), (5.4), (5.5)
we have

/ |AdF|dx:/ Adp dx:/ Vdp- vy di}{lgﬂ{l(ﬁBuﬁ(Fn*))gC,
BNF;F BNFf dBUA(F;)

with C > 0 independent of 1. By the arbitrariness of n > 0, the thesis follows. |

CoroLrary 5.7. — Let U C R? be a bounded open set with Lipschitz boundary. Let
F C R? be closed and convex such that UNF = @ and let ¢ € WHL(U) N L (U) N
CO(U). Then the following formula holds:

—/wAdFdx:/w.VdFdx— Py dHE,
U U oU

where v denotes the normal trace of Vdg on OU.
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Proof. — We have |Vdp| = 1 in R? \ F, moreover since U N F = @, by Lemma
5.6 we deduce also Adr € L'(U). Therefore the thesis readily follows by applying
[5, Th.1.9]. O

Remark 5.8. — The normal trace v of Vdp on OF equals 1 H'-a.e. on OF. Indeed,
from Corollary 5.7 we have that for all p € C}(R?;R?) it holds

_/ @Adpda::/ w-VdFdx—/ pyd3tt
]RQ\Fn+ ]RZ\F,,+ a(F;r)

:/ w-VdFdx—/ wdH?!,
R2\Fyf A(FT)

where we have used that 8(F,;F) being a level set of dp, it results Vdr = v, on it.
Letting n — 0 and using that Adp € L'(B \ F) for all balls B, we infer

f/ @Adpdx:/ V<p~VdFdx—/ 0 dIH*t.
R2\F R2\F OF

By the arbitrariness of ¢ and again by Corollary 5.7, the claim follows.

Levma 5.9, — Let F C Q be closed and convex with nonempty interior, and let § > 0.
Letp € WHL((FF N F)Nn Q)N L2 ((F ~F)NQ)NC((F;” <~ F)N Q). Then

(5.6) lim ¢ dI! :/ P dIE.
QNOF

e=0t Jona(F)
Proof. — Let e € (0,9) and T; := (F . F)N Q. Since T. N F = @, by Corollary 5.7

we get

(5.7) —/ wAdFd:c:/ Vi - Vdrdr — Yy dH*,
T. T.

oT,
which, by Remark 5.8, becomes

Te Te

+/ 1/)d5{1—/ wdi]{l—/ wydﬂfl.
QNOF QNA(FT) ((FFY~F)NoQ

Now
(5.9) lim /w-VdFdx(g lim/ V4| da = 0,
e—0t T. e—0t T.
and
(5.10) lim / md%lj < lim b dH = 0.
=0t 1 J(rtF)nan =0t J(FF < F)non

Moreover, since Adg € LY(T.) by Lemma 5.6, we deduce also

e—0t

(5.11) lim ‘/T —wAdFdx‘ < )z sli%l+/T |Adp|dz = 0.

Finally, gathering together (5.8)—(5.11), we infer (5.6). O
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Remark 5.10. Let F, § and ¥ be as in Lemma 5.9. Let a be any connected com-
ponent of QN JF, and for every 0 < € < § let a. be the corresponding component of
QN I(FF); namely, if mp is the orthogonal projection onto the convex closed set F,
setting

a.:={x € O(FF) : mp(x) € a},

then one has a, := a. N Q. Arguing as in Lemma 5.9, we can show that

lim/ wdﬂ{lz/¢d9{1.
e—0t+ Qe -

Lemma 5.11. — Let (0,¢) € Weony be a minimizer of § in W as in Theorem 3.1.
Then there is a minimizer (G,v) € Weony of F in W with the following properties:

(1) (DE®)) N QL = (DE(s)) N O

~

(2) 9 is continuous and null on QN OE(7).

The second condition means essentially that ¢ vanishes on QN JE () when con-
sidering its trace from the side of Q ~ E(7).

Proof. — We know by Lemma 5.3 that (o,), 0 = (01, ..., 0,), satisfies the following
properties:

— Each connected component of E(c) is convex;

— ¢ is positive and real analytic in Q \ E(o);

— = on OPQ N OE(0).

In what follows we are going to modify (o,) near each arc of OE(c) using an
iterative argument in order to get a new minimizer (7, {b\) € Weony that satisfies
conditions (1) and (2). To this aim we denote by F1,. .., Fj with 1 < k < n the closure
of the connected components of E(c) and set g := min,;»; dist(F;, F;) > 0. Moreover,
by the first property we deduce that 2N OE(o) is the union of an at most countable
family of pairwise disjoint arcs with endpoints in 99, i.e., QNIE (o) = Ule U;il Qs
where «; ; is a connected component of QN IF; for i € {1,...,k}, j > 1.(M
Step 1: Base case. — Let o be one of the connected components of QNOF, with F' := F;
for some 7 € {1,...,k}. In this step we construct a new minimizer (o*,¢*) € Weony
such that (0E(c®))NoQ = (0E(c)) NI and ¢ is continuous and null on o', where

o CQNIOE(c®) is a suitable curve that replaces a and has the same endpoints as a.
For € € (0,0¢/2) we define the stripe

To(a) :={z € Q~ F: dist(z,a) <e} C FF \F,

and consider the planar curve a. in Q defined as in Remark 5.10. Let T.(a) be the
connected component of T, («) whose boundary contains a.. Let L. be defined as

L. := (0T-(a)) N 09,

(")Notice that at this stage we do not have any information about the geometry of the set
(0E(c)) N 99, and QN IF; could a priori be the union of countably many connected components.
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so that in particular 9T, («) = a U o U Le. Let p, ¢ € 92 be the endpoints of « (and
then also the endpoints of a. U L., which are independent of €). We define the curves
FE = F: U F‘;a ]_";r = 91/1La5 U 9<,¢>LLE ) l+7 F; = 97111La€ U SfapLLE U 177

where

1= {pr < [0, 0@ UHar < [0, 0(@)]), 1 = ({p} x[=0®), 0)U({a} x [-¢(a), 0])-
Observing that L. C 9PQ \ 0F(c) and recalling that ¢ = ¢ on 9”Q < 9E(0),
we deduce that I'; is a closed non-planar curve in R® that satisfies assumptions (1)-(3)
of Lemma 5.4. Therefore, a solution S; to the classical Plateau problem corresponding
to I'; is a disk-type surface such that:

(1) 65, := SN (R* x {0}) is a simple analytic curve joining p and ¢;

(2) S is symmetric with respect to the horizontal plane;

(3) the surface ST := S. N {3 > 0} is the graph of a function ¢5 , € WH1(US )N
cO (ﬁ;q N Ap, q}), where U; , C FUT.(«) is the open region enclosed between o U L.

and 3 3
(4) the curve 5  is contained in the closed convex hull of T'c and (FUT.(a))\ U,
is convex.

We would like to compare the area of S with the area of the generalized graph of v
on T.(«). This is not immediate since, due to the fact that ¢ is just BV, we cannot,
a priori, conclude that its generalized graph is of disk-type.®) Hence we proceed as

follows. We fix € € (0,0¢/2); we claim that
(5.12) AW Uf) < A T(a)) + [ oL TH(@) a0t

Since 1 is analytic in Tz(a) C Q N E(0), by Lemma 5.9 and Remark 5.10 it follows
that

(5.13) lim / YL Te(a) del:/z/Jl_Tg(a)df}{l.

e—0+

We take

Tf (o) :=T=(a) N Te(a) and Yz:=S.U SyLTE(e) UGy 17 ()

Since S: is a disk-type surface and v is analytic in TF () it turns out that Yz is also
a disk-type surface satisfying 0Yz = I'z. Therefore using that Sz and S, are solutions
to the Plateau problems corresponding to I'z and I'. respectively, we have

H(Sz) < H2(Yz) = 23 (S 12(a)) + HE(S:)

<2CGunw)+2 [ WLTH) s

a:UL.
=2H*(Sy L 7o(a)) + 2/ YL Te(a)dH +2 [ L Te(a) dH.
Qg Ls

(8)This is due to the jump of ¢ on OF which is, in general, not regular enough.
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Passing to the limit as € — 07, by (5.13) and the fact that H'(L.) — 0, we obtain
32(52) < 26 Gy re) + 2 [ VLTH@) I,
which yields )
A 43U ) = FE(55) < IC Gy ) + [ DL Telo) are
— AW Te(e) + [ WL Te(a) a5,

and (5.12) is proved.
We now define E* := (E(0) UT=(a)) \ Uy , and

0 in B¢,
a._ R § -
L pg M UP#I’
P otherwise.

By (5.12) and using that U7 , U E* = E(0) U Tz(a) we derive
AW Q) — |E*| = A(Yy,4: Uy ) + AW QN (U, , U E?))
= Ay 43Uy o) + AW QN (Tx(e) U E(0)))

(5.14) P
<A@ Te(a)) + / BLTe(0) dHC + A Q < To(a)) — |E(0)
= A:Q) — |E(0)].

It remains to construct o® € Yony. Without loss of generality we may assume
0—1([03 1])7 oo 7071([07 ”) CF and Uh+1([oa 1])7 o 7Jn([07 1]) §Z F

for some h < n; notice that if A = n the second family of curves is empty. Then we

define 0% := (0, ...,0%,0p41,...,05,) € Lip([0,1]; )" as follows: if h > 1

qiDi+1 fori < h-—1,

7O =0 U~ 0z, (UL ) v (U @wrm)) - fori = h,
€ Py i=1Yi i=1
where g;p;11 is the segment joining ¢; to p;y1; if instead h = 1 we simply set
o' ([0,1]) = d(F UTe(a) N Uy ) N Q.
Clearly the pair (o, 9®) belongs to Weony, and by (5.14) it satisfies
F (0%, 4%) = F(o,¢).

Moreover, (OE(c®))NoQ = (OE(0)) N0 and ¢ is continuous and null on o', where
(5.15) of ==, CQUNIE(c”).

Summarizing, we have replaced the curve o with a’, ensuring that the new function ¢
is now continuous and null on «’.
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Step 2: lterative case. In this step we construct a minimizer (3,12) € Weony of F
in W that satisfies the thesis by iterating step one at most a countable number of times.
We first consider F' = I} and apply step 1 for each oy ; with j > 1. More precisely
we define the pair (o1,,%1,j) € Weonv as follows:

—if j =1 we set

(01,1,%1,1) = (0“1, 901,

where (o241, 91) € Weony is a minimizer constructed as in step 1 with o = a4 1;

—if 7 > 1 we set

(Ul,j’ 77[}173') = (Ula;"ilv f,;’il),

where (of,;fi » wiyi 1) € Weony is & minimizer constructed as in step 1 with (o,1)) =
(al,jflv'll)l,j*l) and o« = aq,5-
Since F(o1,5,%1,;) = F(o,9) for all j > 1, by Lemma 4.4 it follows that (o1 ;,%1 ;)
converges to (01,1%1) € Weony in the sense of Definition 4.3. Moreover, by construction
we have that for every j > 1 the pair (o1, ;,%1,;) satisfies

(0E(01,5)) N0Q = (0E(0)) N 0N,
and 1 ; is continuous and null on Ui:l oy, CQN(9E(01,;)) NOF, where o ;, are
defined as in (5.15). As a consequence (o7, ) satisfies
(0E(01)) N0 = (OE(0)) N 01,
and ¢ is continuous and null on |J72, o ; € QN (9E(01)) N OF1. Moreover,
oo k oo
noEe) = (U ot )UU U )
j=1 i=2j=1
Now repeating the argument above for the pair (¢1,%1) and ¢ = 2 we obtain a new
minimizer (o2, %2) € Weony of F in W satisfying
(0E(02)) N0 = (OE(0)) N 01,
with 12 continuous and null on |JjZ, () ;Uas ;) € QN (9E(01)) N ((0F1) UOF) and
2 oo k oo
n @8 = (U U at,)u(U Ua).
i=1j=1 =3 j=1
Iterating this process a finite number of times we finally get a minimizer (o, 12) €
Weonvy 0of F in W with the required properties. O

We are finally in the position to conclude the proof of Theorem 5.1.

Proofof Theorem 5.1. — Let (0,1) € Weony be any minimizer of F in W as in The-
orem 3.1. By Lemma 5.3 we know that (o,1) satisfies properties (1), (2) and the
boundary datum is attained, namely

Yv=¢ on IPQNIE(0).
Moreover, by Lemma 5.11 there is a minimizer (7, 12) € Weony such that
(5.16) OE(0) NN = JE(a) NIQ,

and 1 is continuous and null on € N OE(7).
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Case A Case B

Ficure 4. Case A. 9PQ NOE(G) = ab. The dotted curve upon
represents I'" in (5.17). Case B. 9°Q N OE(G) = {c}. The dotted
curve upon {2 represents the curve I'" in (5.20).

It remains to show that if 9P is not straight for some i = 1,...,n, then
OFE (o) NP0 =0E(G)NoPQ = o,

and if instead 9P is straight for some i = 1,...,n, then property (4) holds. Eventu-
ally we show that there is a minimizer that satisfies property (5). This will be achieved
in a number of steps.

Step 1. — Assuming that there is i € {1,...,n} such that 9P is not straight,
we show that E(G) N 9PN = @. To prove this we proceed by analyzing three dif-
ferent cases.

Case A. — Suppose, to the contrary, that there is a non-straight® arc ab (with
endpoints a # b) in 9°Q N IE(5) (Case A in Figure 4). Thus in particular ab C
U?:1 7;([0,1]). We may assume without loss of generality that ab C 71([0,1]). Then
we consider the curves

(5.17) r:=Trtur-, I':=g§ -uUl™, I'": =G

pLab UZ_’

—z,aL(/lTJ

where

1= ({a} < [0, p(a))U ({0} x [0, 0(B)]), 17 := ({a} x [=¢(a),0]) U({D} x [—4(D), 0)).
In this way I" satisfies the assumptions of Lemma 5.4 and hence a solution S to the
Plateau problem spanning I' is a disk-type surface such that:

(i) Bap =S5 N(R* x {0}) is a simple analytic curve joining a and b;

(ii) S is symmetric with respect to R? x {0};

(iii) the surface ST := SN {z3 > 0} is the graph of a function ¥, , € WH1(U, ) N
C°(Uap ~ {a,b}), where U,, C E(G1) is the open region enclosed between ab and

Ba,b;
(iv) the curve B, is contained in the closed convex hull of I' and E(671) \ Uy is
convex.

(Q)Namely, ab is not contained in a line.
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The inclusion U, C E(d7) follows since ab C 01([0,1]), E(o7) is convex, and S is
contained in the convex envelope of I'. Furthermore by the minimality of S one has

(5.18) ‘A(’(/Ja’b; Ua,b) = %2(S+) < /b

pdst = [ 15~ glasct.
ab
Here the strict inequality follows since the vertical wall spanning I' given by

{(a',23): 2’ € ab, w3 € [~p(a'), p(a')]}

is a disk-type surface but, since ab is not a segment, it cannot be a solution to the
Plateau problem. We now consider the pair (7,1) € Weony given by

0 in 57
(5.19) G = (51,02, ,0n), V= tap inUay,
{p\ otherwise,

where &, is such that &1 ([0,1]) = (51([0,1]) ~ ab) U B, and E := E(G)~ Uy, = E(5).
Then noticing that ¢ =0 in U, 3, E(6) = E(0) U U,,, and recalling (5.18), we get

ﬂairaa&ﬂwwE@n+/ 1 — | do!
onN
:A@K%Jhw+A@@mmw%ﬂEGH+LQ@*¢W%1
=A@ﬁ»+Awa@w—W@n+/ 1 — | do?
onN

<A@xn—w&n+éQJ—ﬂwﬂ+/Q$—ﬂw€

-~

=A@KD—W@H+AJ$—MW¢=?GWL

where the penultimate equality follows from the fact that @Z is continuous and equal
to ¢ on ab while the traces of ¥ and 1 coincide on OS2 \ ab. This contradicts the

-~

minimality of (&,).

Case B. Suppose by contradiction that the set °Q N OFE(5) contains an isolated
point ¢ or has a straight segment cc’ as isolated connected component (Case B in
Figure 4). Then there are two arcs ab C oPQ and atl C OFE(0) with either a # o’ or
b+ b (and with endpoints a # band @’ # ') such that a’NbY = @ and abNa’t’ = {c}
(respectively abNa't = cc’). Notice also that, since 9P is not straight, the segment
cc’ does not coincide with 9P and hence the arc ab can be chosen so that it properly

contains the segment cc/. We consider the curves I' := 't UT'~ with
+ . - .
(520) I'":=G,  ZUS wYSim I =5, aY5 saa¥9 simwm

Notice that I'* connect a’ to b'. By applying again Lemma 5.4 to the nonplanar
curve I and arguing as in case A we obtain the contradiction also in this case.
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Case C. More generally, assume by contradiction that both the sets 0°Q N OE(3)
and 0P\ OE(7) are nonempty. Then we can find a not flat arc ab C 0P Q) such that
the following holds:('9) there are pairs of points {cj,d;}jen C OPQNOE(T) such that
the arcs a:i\o, EE), and {EE }521 are mutually disjoint and
@b~ OE(3) = ady U (E’j 33 ) U cob.
j=1

Without loss of generality, we might assume that all the points ¢;,d; € 71([0,1]). For
all j > 1 we denote by V; the region enclosed by c/j?@ and aE(E).(H) We now argue
as in case B and choose a’,b’ € 71([0,1]). Additionally, let Vo = Vg UV, with Vg
(respectively V?) be the region enclosed between JE(5) and aa’ U ady (OE(0) and
b U @)7 respectively). We finally define T' correspondingly, as in (5.20). Again by
Lemma 5.4 the solution S to the Plateau problem corresponding to I' satisfies the
properties (i)—(iv) considered in case A, with o’ and b’ in place of a and b respectively.
Moreover, by the minimality of S for every N > 1 there holds(*?

(5.21) AW v Uar ) = H*(ST)

N N
<[ewt- [ _pae =Y [ pats Y awvy.
j=17¢id §=0

adoUcob

In particular, by taking the limit as N — 400 in (5.21) we get

(5.22) AWar i U ) = H2(ST) < /

pdH + A U, Vi)
ab~\OE(7)

Let (5,@) € Weony be defined as in (5.19), then observing that 12 =01in Uy p ~
(UiZo V))s E(@) = E(@) U (Uar iy ~ UjZ, V) and using (5.22) we deduce

FE, D) = A Q ~ Un ) + AW Unry) — |E@)] + /@ 19~ el

S AW (U0 V7)) + A s Uy) — |EG)| + /8 19— plaet
CAWGO~ (UZ V) - [EG)

+/ \J—w\d%w/A pdIC + AW U, V)
00 BNIE()

— A;9) — |E@)| + /8 19— pld3t! = 7(@.),

(10)This is a consequence of the fact that ab~ OFE(0) is relatively open in @, so it is an at most
countable union of disjoint relatively open arcs.

(1) These regions are simply connected since ¢;,d; € 1([0, 1]).

(12)The right-hand side is the area of the surface given by the (positive) subgraph of ¢ on
ab~ U;V:1 cj/—d\] and the graph of zZ on the region U;'V:o V;, which is of disc-type. To see this we use
that the trace of 7; on the subarcs of E(5) between the points ¢; and d; is zero (and between a’
and do, and do and b').
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/

which in turn implies
(5.23) F(G,9) < F(G,1).
To conclude we need to show that the inequality in (5.23) is strict. To this aim,
we choose ¢ € {c;}72,. Consider the curves I'; and I'y defined as follows
I =07 Uly, T =8, aU5; mUlT, IT =5 oaUl g Ul
Pp:=T3 ULy, T3:=§, 5U5; Ut Ty:=

where

97@_@ US_sw VI
"= ({c} < [0,0(0)]), 17 = ({c} x [=¢(c),0]).

Let S7 and S5 be the solutions to the Plateau problem corresponding to I'; and T'y

respectively, so that properties (i)—(iv) are satisfied with ¢ in place of ¥’ and a’ respec-

tively. By the minimality of S we have

(524) ‘A(wa’,b’; Ua’,b/) < ‘A(wa/,c; Ua’,c) + ‘A(wc,b’§ Uc,b’)~

On the other hand by arguing as above,® we conclude

(5.25) AWV < [ pdd 4+ A U VUV,
GEUDE() jeh

and

(5.26) Al Vo) < [ a4+ A U VU,
CBUOE(5) jEIs

where I := {j: C/JE C ac}and I := {j: c/JE C cb}. Gathering together (5.24)—(5.26)
we derive

AwraiUoi) < [ pastt 4@ U vy,

abUJE(7) 7=0

which in turn implies - ~
F(o,9) <F(o,9),

and thus the contradiction.

Step 2. — Assuming there is i € {1,...,n} such that °Q is a straight segment,
we show that either (OE(7)) N 0PQ = @ or (OE(7)) N PQ = 9P€. Suppose by
contradiction that (OE(5)) N 9PQ # @ and also 9°Q \ OE(5) # @. Without loss
of generality we can restrict to the case (OE(5)) N dPQ = (OF) N dPQ with F any
connected component of E(7). Since F is convex and 9° is a segment (0F)NGP ) has
to be connected, i.e., it is either a single point a or a segment aa’ # 9. In both cases
we then consider a (small enough) ball B centered at a such that BN E(¢) = BN F
(in the second case we also require that the radius of B is smaller than aa’).

If (OF) N 9PQ = {a} we let {p,q} := (OB) NOF and {b,c} := (OB) N OPQ (with
b,p and ¢, g lying on the same side with respect to a). Then we define the curves

1t - + . - .
I:=TTUl'", I'":=9,5US, Y% @ I =9 ,%YUS_, 5YS-uLa

where bp, ¢q denote the arcs in OB joining b to p and ¢ to ¢ respectively.
(13)With the arc ae (&;, respectively) in place of ab.
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If (OF) N OPQ = aa’ we let {p,q} := (0B) N OF and {b,c} := (0B) N P, where
we identify ¢ and c¢. Then we consider the curves I' := ' UT'™ with

I =89, 57U U x[0,0@)), T7:=8_, 5US_, 5Y{c}x[-¢(),0).

By applying again Lemma 5.4 to I and arguing as above we get the contradiction.

Step 3. — We show that there is a minimizer (5, 1)) that satisfies property (5). We first
notice that 12)\ is continuous and null on OFE(5) \. 9PQ. Moreover, by steps 1 and 2 it
follows that Q N AE(c) is the union of a finite number of pairwise disjoint Lipschitz
curves each of them joining each p; for i = 1,...,n to each of the g; for some j =
1,...,n. To conclude it is enough to replace each curve, without increasing the energy,
with an analytic one having the same endpoints. More precisely, let v be any of such
curves. Reasoning as in the proof of Lemma 5.11 step 1, we can replace (7, QZ) with a
new minimizer (67,97) € Weony such that (OF(c7))NIQY = (OE(0))NO and Y =0
on v/, where 4/ C (OE(c”)) N Q is a suitable analytic curve that replaces v and has
the same endpoints of . In particular, 17 is continuous and null on dE(c7) \ 0P Ryy.
Eventually iterating this procedure for each curve in 0E(7) N\ 92 we can construct a

new minimizer (o,) with the required properties. a

5.1. TiE EXAMPLE OF THE CATENOID CONTAINING A SEGMENT. Consider the setting of
Figure 6. Recall that Q = Ry, = (0,20) x (=1,1), n =1, 9PQ = ({0,2¢} x (—1,1)) U
((0,2¢) x {—1}) and 9°Q = (0,2¢) x {1}, p = (0,1), ¢ = (2¢,1). The map ¢ given
in (7.3) is ¢(z1,22) = /1 — 2% on 9P, and thus vanishes on [0,2¢] x {—1}; for
this reason this case is not covered by our analysis. However we can find a solution
as in Theorem 1.1 also in this case, by an approximation procedure. Precisely, for
€ > 0 consider an approximating sequence () of continuous Dirichlet data, with G,_
Lipschitz, which tends to ¢ uniformly and satisfies . = 0 on 9°Q, . > 0 on PQ.
Let (o¢, 1) be a solution as in Theorem 4.1 corresponding to the boundary datum ¢;
since F(oe, ) is equibounded,*®) arguing as in the proof of Lemma 4.4, we can see
that, up to a subsequence, ((o¢,.)) tends to some (o,1) € Weony, which minimizes
the functional I with Dirichlet condition ¢. In this case however we cannot guarantee
that o does not touch €, even if this is not a straight segment. This is essentially
due to the presence of the portion [0,2¢] x {—1} of 9 where ¢ is zero, which does
not allow to apply the arguments used in the proof of Theorem 5.1.

In particular, it can be seen that if ¢ is large enough, the solution (o, ) splits and
becomes degenerate, being ¥ = 0 and the value of F is just the area of two vertical
half-disks of radius 1. For ¢ under a certain threshold, instead, the solution satisfies
the regularity properties stated in Theorem 5.1, and in particular ¢ = ¢ on 0,
and o is the graph of a smooth convex function passing through p and q. We refer
to [10] for details and comprehensive proofs of these facts; we also notice that in this
special case further regularity of solutions can be obtained.

(14)We can bound it from above by |Q| + fapﬂ |pe|dIT.
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6. COMPARISON WITH THE PARAMETRIC PLATEAU PROBLEM: THE CASE 11 = 1, 2

In this section we compare the solutions of Theorems 3.1 and 5.1 with the solutions
to the classical Plateau problem in parametric form. Specifically, motivated by the
example of the catenoid, we restrict our analysis to the classical disk-type and annulus-
type Plateau problem. These configurations correspond to the cases n =1 and n =2
respectively, i.e., the Dirichlet boundary 9P is either an open arc or the union of two
open arcs of ) with disjoint closure. Due to the highly involved geometric arguments,
we do not discuss the case n > 2, which requires further investigation. Thus, in this
section we assume n = 1,2. We first discuss the case n = 1, which is a consequence
of Lemma 5.4, and next the case n = 2.

6.1. Tie case n = 1. — Let n = 1. Let p1,q1 € 99, 0PQ = 9PQ, ¢ be as in
Section 2.2 and consider the space curve vy := Sw,_alog joining p; to ¢;. We define
the curve

I':=~ USym(m),
where Sym(v1) := §_, ypq, and consider the classical Plateau problem in parametric
form spanning I'. More precisely we look for a solution to

1 I'):= inf d P
(6.1) i) i= |90 0 Dl

where

(6.2) Py(I):={® € H'(B;;R*) N C"(B1;R®) such that
®L_0B;: 9B; — T is a weakly monotonic parametrization of F}.

By classical arguments, it is well-known that every solution to (6.1) is a harmonic and
conformal parametrization of an area-minimizing surface spanning I".

Turorem 6.1 (The disk-type Plateau problem (n = 1)). — Assume T is not planar,
let ® € P1(T") be a solution to (6.1) and let

S+ = (I)(El) n {.’173 2 O}, S = @(El) N {1‘3 < 0}
Then there exists a minimizer (o,v) € Weony of F in W satisfying properties (1)—(5)
of Theorem 5.1 and such that

+
(6.3) 5% =5y @m0

Conversely let (o,1) € Weony be a minimizer of F in W satisfying properties (1)—(5)
of Theorem 5.1. Then the disk-type surface

5= SyL@m@) Y 9y L@ E@)
s a solution to the classical Plateau problem associated to I, i.e., there is a harmonic

and conformal map ® € P1(T) solving (6.1) and such that ®(B;) = S.

We have assumed I' is not planar, otherwise the classical solution is flat, and any
solution to Theorem 5.1 satisfies (9F(c)) N 9PQ = 9P Q.
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6.2. Tur case n = 2. Let n = 2. Let Q, p1,q1,p2,q2 € 99, 0PQ, oPQ, 02Q, ¢
be as in Section 2.2 and consider the space curve v; := G, ypq joining p; to g; for
1 = 1,2. We define the curves

Iy =y USym(m), T2 := 72 USym(72),

where Sym(v;) := G_,,_gpgq for i = 1,2. We consider the classical Plateau problem in
parametric form spanning the curve

I':= Fl UFQ.

Precisely we set Yann C R? to be an open annulus enclosed between two concentric
circles Cy := 0B1(0) and C5 := 9B5(0), and we look for a solution to

6.4 I):= inf Do, ® A D, D|dw,
( ) mQ( ) @61392(1“) 5 | 1 2 ‘ w

ann

where

Po(T) :={® € H' (Zann; R?) N C°(Tann; R?) such that ®(9%,n,) =T and
®LC;: C; — T is a weakly monotonic parametrization of I';, j =1, 2}.

Here the crucial assumption that we require is that the curves I'; have the orien-
tation inherited by the orientation*®) of the graph of ¢ on GJD Q.

Due to the specific geometry of I" we can appeal to Theorem 6.3 below (which is
a consequence of [34, Th.1 & Th.5]) to deduce the existence of a minimizer. This
might not be true for a more general I". To this purpose for j = 1,2 we consider the
minimization problem defined in (6.1) for the curve I';, namely
(6.5) 7nlay)::@eggnﬂjglm%1¢/\aw;mdw,
with P1(I';) defined as in (6.2).

By standard arguments one sees that ma(I') < m1(I'1) 4+m1(T2). Indeed, two disk-
type surfaces can be joined by a thin tube (with arbitrarily small area) in order to
change the topology of the two disks into an annulus-type surface.

Derinirion 6.2 (MY solution). — Let @ € Po(T') be a solution to (6.4). We say that @
is a MY solution to (6.4) if © is harmonic, conformal, and it is an embedding. In par-
ticular, in such a case, ma(T') = H(®(Xann))-

Tueorem 6.3 (Meeks and Yau). — Suppose ma(T') < mq(T'1) + m1(Ts). Then there
exists a MY solution ® € Po(T") to (6.4). Furthermore, every minimizer of (6.4) is a
MY solution.

Proof. — See [34]. O

This result allows us to prove the following:

nce we fix an orientation o , the orientation of the grap of ¢ is inherited, since
(15)0 fi ientation of 9, the orientation of the graph G, of ¢ is inherited, since G,
is defined in a standard way as the push-forward of the current of integration on dp2 by the map
2 (2, 0(2)).
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Turorem 6.4 (The annulus-type Plateau problem (n = 2)). The following holds:

(i) Suppose ma(T') < m1(T1) + my(T2). Let & € Po(T") be a MY solution to (6.4)
and let

S = (I)(iann)a S+ = S N {$3 2 0}, 37 = S N {$3 é 0}

Then there exists a minimizer (o,v¥) € Weony of F in W satisfying properties (1)—(5)
of Theorem 5.1 and such that

+
(6.6) 5% =51y @@

(ii) Suppose mo(T') = m1(T1) + m1(T2), and assume that both Ty and T's are not
planar. For j = 1,2 let ®; € P1(I;) be a solution to (6.5) and let S; := ®;(By). Let
also

S+ = (S1U52)ﬂ{333 20} and ST = (S1U52)m{$3 QO}

Then S1 NSy = & and there exists a minimizer (0,v) € Weony of F in W satisfying
properties (1)~(5) of Theorem 5.1 and such that (6.6) holds.

(iii) Conversely, let (o,1) € Weony be a minimizer of F in W satisfying properties
(1)=(5) of Theorem 5.1. Then the surface

S:= 5y @<mon Y Iy @<mo)
is either an annulus-type surface or the union of two disjoint disk-type surfaces, and
is a solution to the classical Plateau problem associated to I'. More precisely, either
there is a MY solution ® € Po(T) to (6.4) with S = ®(Tann), or there are ®; € P1(T;)
solutions to (6.5) for j = 1,2, such that

S:(I)l(gl)U©2(§1) and @1(?1)ﬂ@2(§1) = .

6.3. Towarp THE PROOF OF THEOREMS 6.1 AND 0.4: PRELIMINARY LEMMAS. In order
to prove Theorems 6.1 and 6.4, we collect some technical lemmas.

Lemma 6.5 (Graphicality of minimizers for n = 2). Let n =2, and (0,%) € Weony
be a minimizer of F in W satisfying properties (1)—~(5) of Theorem 5.1.

(a) Suppose that Q ~\ E(c) is connected. Then there exists an injective map ® €
W (Sann; R3) N CO(Zann; R?) such that

@(Bann) = 9y @<z Y I yL@<E@)

and ®L_C;: C; = I'; is a weakly monotonic parametrization of I'; for j =1,2.
(b) Suppose that U\ E(c) consists of two connected components, whose closures Fy
and Fy are disjoint, with F; 2 8JDQ for j =1,2. Then there exist two injective maps

Oy, Py € WHY(By;R3) N C%(By; R3) such that
®;(B1) =SyLr, US—yLr,, j=12

and ©;L.0B1: 0B1 — I'; is a weakly monotonic parametrization of I'; for j =1,2.
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Supposing that Q\ E(o) has two connected components as in (b), it readily follows
that I'; and 'y cannot be planar (otherwise the solution will be flat on 8JD Q and
Fj =@ for j =1,2).

Proof
a) Since Q \ E(0) is simply connected,(*9) the maps
( ) p ) p

6.7 TEe WH(QNEO)R)NCOUQNE@);RY),  TE(p) = (p, (D)),

are disk-type parametrizations of §, | G (y), thanks to properties (1)—(5) of The-
orem 5.1.

Now, by using a homeomorphism of class H* between Q \ F(c) and a disk, we can
parametrize!” Q \ E(o) with a half-annulus, obtained as the region enclosed between
two concentric half-circles with endpoints A, As, Az, A4 (in the order) on the same

diameter, and the two segments A; Ay and A3A4. Then we construct a parametriza-
tion Ut of Sy @<y 2 in (6.7) from the half-annulus, such that Ut (A1) = (q1,0),
Ut (Ay) = (p2,0), UT(A3) = (g2,0), ¥T(Ay) = (p1,0), and mapping weakly mono-
tonically the two half-circles into «; and 79, and the two segments into o1([0, 1]) and
o2([0,1]), respectively. Similarly, we construct a parametrization ¥~ of §_ SLEO<E(o))
from another copy of a half-annulus, just setting ¥~ := Sym(¥™), the symmetric
of UT with respect to the plane containing €.

Eventually, gluing the two half-annuli along the two segments, we get a parametri-
zation ® of G LEO<E(0)) usg DLEO<E(o)) defined on X,,,. By the continuity of ¢ on
0P Q we have that ® parametrizes I'; on C;, i = 1, 2.

(b) It is sufficient to argue as in case (a), by replacing Q \ E(0) in turn with F3
and Fy and Y., with By to find ®; and ®5, respectively. O

Levma 6.6. — Let n = 2, and (0,9) € Weonv be a minimizer of F in W satisfying
properties (1)—~(5) of Theorem 5.1.

(a) Suppose that Q ~ E(o) is connected and

(6.8) ISy @mm) Y I-su@mwm) < m2(l):

Let @ be the parametrization given by Lemma 6.5(a). Then there exists a reparametri-
zation of the annulus X.n, such that, using it to reparametrize ®, the corresponding
map (still denoted by ®) belongs to P2(I") and solves (6.4).

(b) Suppose that Q~ E(c) consists of two connected components whose closures Fy
and Fy are disjoint, F; 2 6J-DQ for j=1,2, and

H*(SpLr, US—yLr,) <my(ly), J=12.
Let @1, D5 be the maps given by Lemma 6.5(b). Then, for j = 1,2, there is a repara-
metrization of ®; belonging to P1(T';) and solving (6.5).

(16)This is the region enclosed by 8P Q U o1 ([0, 1]) U o2([0, 1]).
(17)For instance, we can consider a (flat) disk-type Plateau solution spanning 9(Q2 \ E(c¢)). Then
we can employ a Lipschitz homeomorphism between the disk and the half-annulus.
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/

Proof
(a) Fix a point p € Q \ E(0) and set ¥} := ¥+ Hy, where V¥ is defined in (6.7)
and, for k € N sufficiently large, Hj is the connected component of
Hy, = {peQ~ E(0) : dist(p,0(Q~ E(0))) > 1/k}
containing p. For k € N large enough Hy, is simply connected with rectifiable boundary,
thanks to the simply-connectedness of 2 \ E(c). In particular, \I% parametrizes a
disk-type surface, and using the regularity of ¢ in Q \ E(0), it follows that \I/; is
Lipschitz continuous. Furthermore, \Il'kF | 0H}, parametrizes a Jordan curve, and these

curves, suitably parametrized, converge in the sense of Fréchet (see [22, Th. 4, §4.3])
as k — +o0, to the curve having image ¥+ (9(2 \ E(0)))) =: A. Notice that

(6.9) A =01([0,1])) Uoa([0,1]) Urg Urye.
Call Ay the image of the curve given by @:L@Hk. Let P1(Ak), P1(A), mi(Ag), mi(A)

be defined as in (6.2) and (6.1) with A; and X in place of T' respectively. Up to
reparametrizing B1 (see footnote 15), ¥} belongs to P1(Ax), therefore

H2(SyLm,) = / 0 U A By, Ui [dw = my(Ng) Yk > 1.
Hy,

We claim that equality holds in the previous expression, namely
(6.10) H*(Gypim,) =mi(N\)  VE> 1.

Indeed, assume by contradiction that 3*(Gy m,,) > m1(Ak,) for some ko > 1, and
pick § > 0 with

(6.11) F(Gpirey) = 6 +ma (A, )-
Take @, € P1(Ak,) a solution to mq(Ag,). For k > ko, as Hyp, C Hy, by a gluing
argument,'® we can find ®;, € P1(\;) such that &, (B;) = &, (B;) U Sy L(H~Hy )
Thus by (6.11) we have
H(GyLmy) = 0+ mi(Aky) + H Gy myy))
=6+ 3Dy, (B)) + 5{2(9wL(Hk\HkO)) >6+mi(M\e) Yk > ko.
Letting k — +00, since Ay — A in the sense of Fréchet, we have m1(\g) — m1(N) [22,
Th. 4, §4.3]. In particular, from the previous inequality we infer
Flo,y) = %2(9@01-(@)) >0+ ma(A).

Hence we conclude

(S @avmen Y S-vamme))
which contradicts (6.8). In the last inequality we have used that 2mq(\) > mo(T);
this follows from the fact that a disk-type parametrization of a minimizer for mq(\)
can be reparametrized on a half-annulus (as in the proof of Lemma 6.5), and glued

(18)This is done, for instance, by gluing an external annulus to a disk, and using ®;, from the
disk, and a reparametrization of G, L(Hj~Hy,) from the annulus.
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with another reparametrization of it on the other half-annulus, so to obtain a parame-
trization of an annulus-type surface spanning I which is admissible for (6.4). Hence
claim (6.10) follows.

Now, since 1 is Lipschitz continuous on Hy, for all k¥ € N sufficiently large there
exists a map Wy € H'(By;R?*)NCY(By;R3) with ¥;,(0B;) = \x monotonically which
solves the classical disk-type Plateau problem spanning A\, and such that

U (B1) = Gy Hy-

Letting £ — +o00 and using that the Dirichlet energy of ¥;, equals the area of Gy #, ,
we conclude that (¥) tends to a map ¥ € H'(B1;R3)NC(By; R3) with ¥(9B;) = A
weakly monotonically, and that is a solution of the classical disk-type Plateau problem
with

V(B = Sy @m0
Arguing as in the proof of Lemma 6.5 we finally get a map ® : ¥,,, — R? which
belongs to P(T") and parametrizes G LE<E)) Y g SLEO<E() This concludes the
proof of (a).

(b) Tt is sufficient to argue as in case (a), by replacing Q \ E(0) in turn with F}
and Fy and Y., with B; to find ®; and ®5, respectively. O

Using the arguments above to show conditions (b) of Lemma 6.5 and (b) of Lem-
ma 6.6, we deduce the following:

CoROLLARY 6.7. Let n = 1, assume that T is not planar, and let (o,v) € Weony
be a minimizer of F in W satisfying properties (1)—(5) of Theorem 5.1. Then there
exists an injective map ® € WH1(By;R3) N C°(By;R3) such that

®(By) = Iyl @<B@) Y I wL @B

and ®L0B;: 0B1 — I' is a weakly monotonic parametrization of T'. Moreover, if
&(2(9wm) U 9—1,[1L(Q\T(0))) < my(T') then there is a reparametrization of ®
belonging to P1(I') and solving (6.5).

Now we can start the proof of Theorems 6.1 and 6.4.

6.4. Proor or TuEOREM 6.1

Proofof Theorem 6.1. — Let ® € P1(T") be a solution to (6.1). The curve I' satisfies
the assumptions of Lemma 5.4 (notice that in this case we have f(p1) = f(q1) = 0),
hence the minimal disk-type surface S := ®(B;) satisfies the following properties:

~ Bpr.r :=SN(R? x {0}) C O is a simple analytic curve joining p; and ¢; and such
that 8p,.q, NOQ = {p1, 1 };

— S is symmetric with respect to R? x {0};

— the surface St = SN {x3 > 0} is the graph of a function ¢ € WUy, 40) N
COUp,.q1), where Uy, 4, C € is the open region enclosed between 9P and S, 4 -

Moreover, 1) is analytic in Uy, 4,;
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— the curve f3,, 4, is contained in the closed convex hull of I', and € \ U, 4, is
convex.

Let (0,1) € Weony be given by

o =01 and P =

{0 in QN Up, q15
w in Uphqu

where 71([0,1]) = By, 4, Clearly (6.3) holds, and H?(S) = 2F(o,v) = m4(T). It re-
mains to show that (o,) is a minimizer of F. Let (0/,¢’) € Weony be a minimizer
of F that satisfies properties (1)—(5) of Theorem 5.1 and consider the disk-type sur-
face with boundary I' given by S := § | g5 Y 9_y L @<men)- Since (o,9) is
admissible for ¥, we deduce

H2(S') = 2F (o, 4') < my (D).

Thus we are in the hypotheses of Corollary 6.7 and so there is a map &' € P1(T") with
®’(By) = S’. By minimality of (¢/,¢’) and of S we have

(6.12) FH2(S) < H*(S") = 25 (o', 9') < 2F (0, 7)) = H2(S).

Hence (o,1)) is a minimizer of F in W and @’ is a solution to (6.1).
Conversely, let (0,9) € Weony be a solution that satisfies properties (1)—(5) of
Theorem 5.1 and let S := 91/)'—(@) U 971“(@). Let ® be a solution to (6.1);

then we can find (5,@) € W whose doubled graph S = SJL(W@)) U S—JL(W@;))
satisfies

303(5) = 25(0,9) < 25(3,9) = 3(S) = my ().
Arguing as before we find a map ® € P;(I") parametrizing S. We conclude that ® is
a solution to (6.1), and the theorem is proved. O

6.5. Proor or Turorem 6.4. — The proof of Theorem 6.4 is much more involved,
so we divide it in a number of steps. We start with a result (which can be seen as
the counterpart of Lemma 5.4 for the Plateau problem defined in (6.4)) that will be
crucial to prove (i). In what follows we denote by m: R3 — R? x {0} the orthogonal
projection.

TueoREM 6.8. Suppose ma(I') < m1(T'1) + m1(T'2) and let & € Po(T") be a MY

solution to (6.4). Then the minimal surface ®(Xann) satisfies the following properties:
(1) The set 7(®(Xann)) is simply connected in Q; QN O (P(Sann)) consists of two
disjoint embedded analytic curves 81 and Ba joining q1 to pa, and qo to p1, respectively.
Moreover, for i = 1,2, the closed region E; enclosed between 09 and B; is conver;
(2) ®(Xann) is symmetric with respect to the plane R? x {0};
(3) ®(Zann) N (R? x {0}) = 1 U fa;
(4) ST := ®(X,nn) N{z3 > 0} is Cartesian. Precisely, it is the graph of a function
§ € WL (int (r(®(Sann))) 1 CO(r(@(Famn)))-

The proof of Theorem 6.8 is a consequence of Lemmas 6.9, 6.10, 6.11, 6.13 , 6.14,
and 6.15 below.
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Ficure 5. The horizontal section of two half-planes Ilg, and Ily, in-
tersecting 9V and 99Q, respectively.

Levva 6.9 (Simply connectedness). — Suppose ma(I') < mq1(I'1) + mi1(T2) and let

O € Py(T) be a MY solution to (6.4). Then w(P(Xann)) is a simply connected region
in Q and 7(®(Bann)) NN = 0PQUIPQ.

Proof. — We recall that ® : 3,,, — R? is an embedding. The fact that 7(®(Zann))
is a subset of Q and 7(®(Xann)) N N = IPQ U LQ follows from the fact that the
interior of ®(X,,,) is contained in the convex hull of T'. So it remains to show that
7(®(Xann)) is simply connected.

Suppose by contradiction that 7(®(X,p,y)) is not simply connected. Let H be a hole

of it, namely a region in Q surrounded by a loop contained in 7(®(X,,,)) and such
that H N7(®(Xann)) = F; choose a point P € H. We will look for a contradiction by
exploiting that >,,, is an annulus and using that the map ® is analytic and harmonic.

Let 0 be the angular coordinate of a cylindrical coordinate system (p,#,z) in R?
centered at P and with z-axis the vertical line 7=1(P). For # € [0,27) we consider

the half-plane orthogonal to R? x {0} defined by
Iy :={(p,0,2): p> 0,z € R}.

Now we fix two values #; and 0 so that Ty, and Ils, intersect (the interior of) 990
and 99Q respectively. The half-planes*?) Tly, , » and Il, ;» might intersect IPQ (see
Figure 5). However, since the points p1, ¢1, p2, g2, are in clockwise order on 912, and 2
is convex, it is not difficult to conclude the following assertion:

The half-planes Ilp, 4 and Ilg,;+ - cannot intersect the two components 61D Q and
OP QO of OPQ at the same time.

In other words: if, for instance, Iy, ; intersects 9P €2, then Iy, ;. does not intersect
0P Q. Let us prove the assertion in the form of the last statement, being the other cases
similar. This is trivial since, if [Ty, intersects Y and Ily, ;. intersects OPQ (as in
Figure 5), we have that I1 intersects 0P Q U 99Q for all § € [0,6; + 7]. As either 0y

(19)The angles are considered (mod 27).
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or 63+ belongs to [0y, 01 + 7], we have that Ily, UTls, , intersects 9P QU Q. Since
by hypothesis 11y, intersects 992, it follows that Ily, ., does not intersect 92, and
the statement follows.

Moreover, since Ilg, intersects 9YQ and Iy, intersects 99€), it is straightforward
that, if Ilp, . intersects 9YQ then also Iy, intersects 99€2.

We are now ready to conclude the proof of the lemma. We have to discuss the
following cases:

(1) Tlp, 4 intersects 9°Q;
(2) My, intersects OPQ;
(3) Tlp, 1 intersects 0L Q.

By hypothesis on P, for all § € [0,27) the intersection between ®(X,,,) and Il
consists of a family of smooth simple curves, either closed or with endpoints on I'.
Correspondingly, ® 1 (®(Xan, ) N1p) is a family of closed curves in X,,,, possibly with
endpoints on C;UC5. In particular, since Ty, NOYQ # @, the set??) &1 (®(X )Ny, )
is a family of closed curves in ¥,py.

In case (1) also, @1 (®(Xann) N1y, 1) consists of closed curves in X,,,. Take two
loops @ and o in ®~1(®(X,n,) N1lp,) and in &~ 1(P(Tann) N Ilp, 4 ) respectively.
Let d; be the signed distance function from the plane Ilp, UTlg, 4, positive on 92 Q.
Since d; o® changes its sign when one crosses transversally « and o', we easily see that
both « and o’ cannot be homotopically trivial in X,,, (by harmonicity of dy o ®, if for
instance « is homotopically trivial in X,,,, by the maximum principle d; o® = 0 in the
region enclosed by «, i.e., the image of ® is locally flat, contradicting the analyticity
of ®@). Hence, since ® is an embedding, they run exactly one time around Ci; as a
consequence, they must be homotopically equivalent to each other in X,,,. On the
other hand, they do not intersect each other (® is an embedding), so they bound
an annulus-type region in Y,,,, and by harmonicity d; o ® is constantly null in this
region. This would imply again that the image by ® of this annulus is contained in
ﬁgl U IIg, 4+, & contradiction.

In case (2), from our assertion, we deduce that Ilg, ., might intersect either 9°€)
or 9P Q. Further we can exclude that Ilp, ;. intersects 3°Q) (otherwise, we repeat the
argument for case (1) switching the role of §; and 65). Therefore the only remaining
possibility is that Ilp,, intersects 9P (see Figure 5). Let dp be the signed distance
function from the plane Ilp, U Iy, positive on 9. In particular, d; o ®, i = 1,2,
is positive on the circle Cy of Tann. By hypothesis on d;, i = 1,2, we see that d; is

positive on Ily,, and dy is positive on Iy, .

As in case (1), let & C @~ H(®(Zann) Np,) and B C &~ H(D(Z,,n) N1I,) be two
loops. We know that « and 8 are closed in 3,,,. Again, we conclude that o and 3
are homotopically equivalent in X,,,, and both run one time around C;. Assume
without loss of generality that 5 encloses «, which in turn encloses C;. Since ds o ®

(2O)Since Hgl N8P QO = & these curves must be closed in Yann-
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is positive on both a and C5, dy o ® must be positive in the region enclosed between
them, contradicting the fact that it vanishes on .

If instead we are in case (3) we can argue as in case (2) and get a contradiction.
In all cases (1), (2), and (3), we reach a contradiction which derives by assuming that

(P (Xann)) is not simply connected. The proof is achieved. O
We next proceed to characterize the geometry of Q N Im(®(Xann))-

Lemva 6.10 (Trace on the horizontal plane). Suppose ma(T') < my(T'1) + mq(T'2)
and let ® € Pa(T) be a MY solution to (6.4). Then Q N Om(®(Xann)) consists of
two disjoint Lipschitz embedded curves By and Bo joining q1 to p2, and g to pi,
respectively. Moreover, the closed regions E; enclosed between 9YQ and B; are convex
fori=1,2.

Proof. — By Lemma 6.9, 7(®(Xann)) is simply connected in Q, and 7(®(Zan))NOQ =
0P Q. Therefore Q ~\ 7(®(Xann)) consists of two simply connected components, one
containing 8?9 and the other containing 889. Let E; and E5 be the closures of these
two components,?!) so that in particular the boundary of E; is a simple Jordan curve
of the form B; U 8%Q for some embedded curve $; C (2 joining the endpoints of §%4).
We will prove that F; is convex for ¢ = 1, 2. This will also imply that 3; are Lipschitz.

Take ¢ = 1, and assume by contradiction that F; is not convex. Thus we can find
a line ! in R? and three different points A1, As, A3 on I, with Ay € A1 Ag, so that Ao
is contained in Q \ F7, and A; and A3 belong to the interior of Fj.

Consider the region 7(®(Zann)) \ I, which consists in several (open) connected
components. There is one of these connected components, say U, which does not
intersect 9PQ and whose boundary contains A,. In addition, U N 9PQ = @. Indeed,
OU is the union of a segment L (containing As) and a curve v (contained in §; C
O(m(®(Xann))) joining its endpoints. Hence, U \ U = v U L, and L cannot intersect
0P Q by the hypothesis on A1, Ay, and As.

Let II; C R3 be the plane containing [ and orthogonal to the plane containing €.

As usual, II; NP (X,py,) is a family of closed curves, possibly with endpoints on I' N II;.
Now, pick a point P on OU \ L, and let Q be a point on ®(X,,,) so that 7(Q) = P.
Let d; : R® — R be the signed distance from II;, with d;(Q) = d;(P) > 0. We claim
that, if D is the connected component of {w € Y., : d; o ®(w) > 0} containing
the point ®~1(Q), then D N d%,,, = @. This would contradict the harmonicity of
d; o @, since d; o ® would be zero on D, but d;(Q) > 0, in contrast with the maximum
principle.

Assume by contradiction that the converse holds. Then there is an arc o : [0,1] —
D U 0%,y joining @71(Q) to 0¥ ann - The image of the map 7o ® o o is an arc in
joining P to 9P and such that d; > 0 on it. Clearly this arc is a subset of m(®(Xann))-

Since m o ® o a(0) = P, it follows that the image of 7 o ® o « is contained in U.

(2D)The sets E1 and E9 have nonempty interior, since ®(Zann) is contained in the interior of the
convex hull of ®(0Xann), hence contained in the cylinder  x R.
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Now, U does not intersect ”Q, contradicting that mo®oa(1) € 9PQ. This concludes
the proof. O

In the next step we show that there exists a set £ C R? of finite perimeter such
that

OE = 0"E = ®(Zann) UAL U Ay,

where 0* denotes the reduced boundary, and

(6.13) A;:={P=(P',P3) eR®: P' = (P, P,) € 979, Py € (—p(P'),0(P))},
i=1,2.

In particular, Ay U Ay C (992) x R and (2 x R)NIE = ®(Zann)-

We first fix some notation. We let [E] € D3(R?) be the 3-current given by integra-
tion over E with E C R? a set of finite perimeter. To every MY solution ® € Py(T")
to (6.4) we associate the push-forward 2-current ®;[X,un] € D2(R?) given by integra-
tion over the (suitably oriented) surface ®(X,nn) [32, §7.4.2]. Finally, if T € Dy (U)
with U C R? open and k = 2,3, we denote by |T| the mass of T in U [24, p. 358].

LLemma 6.11 (Region enclosed by ®(3.nn)). — Suppose ma(T) < my1(T'y) + mq(Ts)
and let ® € Po(T) be a MY solution to (6.4). Then there is a closed finite perimeter
set E C Q x R such that (2 x R)NIOE = ®(Z,nn).

Proof. — As ®4[Eann] is a boundaryless integral 2-current in 2 x R, there exists (see,
e.g., [32, Th. 7.9.1]) an integral 3-current € € D3(Q x R) with € = ®4[Xann], and we
might also assume that the support of € is compact in @ x R. We claim that, up to
switching the orientation of ®4[¥,nn], € has multiplicity in {0,1}, and hence is the
integration [E] over a bounded measurable set E. Since 0€ = &4, ], this will be
a finite perimeter set, and [(Q2 x R) N 0*E] = ®4[Xann].

By Federer decomposition theorem [24, §4.2.25, p.420] (see also [24, §4.5.9] and
[32, Th.7.5.5]) there is a sequence (Ej)ren of finite perimeter subsets of € x R such
that

+oo
(6.14) €= oxlE], ore{-11},
k=1
and
“+o0 “+o0
(6.15) €] =) B and [9€] = H*(D(Sann)) = Y H? (9" Ey).
k=1 k=1

We start by observing that
(6.16) O"Er C ®(Zamn) vk € N.

Indeed, fixing k € N, by the second equation in (6.15), we have that 9* Fy, is contained
in the support of €, which in turn is ®(3,,,). As a consequence, if P = (Py, Py, P3) €
(2 x R) N O*Ej, then P € ®(Xapny). Around P we can find suitable coordinates and a
cube U = (Py—¢, Pi+¢e)x (Py—¢, Pa4¢) x (P3—¢, P3+¢) such that ®(X,,,)NU is the
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graph G, of a smooth function h : (P, —¢, Py +¢) X (P —¢, Po+¢) = (P3—¢, Ps+¢).
Moreover, ®4[Xann] = [9r] in U.
We claim that

Vk either E,NU=UNSG, or E,NU=U~-SG,.

Indeed, assume for instance that |Ex N U NSGp| > 0 and [(SGy ~ Ex) NU| > 0; by
the constancy lemma [32] it follows that O[F%] is nonzero in the simply connected
open set SG},, contradicting (6.16). As a consequence of the preceding claim, we have
UNO*E, =UN®(X,nn). Since this argument holds for any choice of P € (2 x R) N
0* B}, we have proved that (2 x R) N 0* E}, is relatively open (and relatively closed at
the same time) in ®(X,,,), which in turn being a connected open set, implies

O(Sam) = 0B, VkeN.

Denote by J* := {k € N : 0}, = £1}, with 0} as in (6.14). Going back to the local
behaviour around P € ®(X,,,), if U is a neighbourhood as above, we see that for all
k € I either Ex NU = SG}, or E, = U \ SG}, (namely, all the E}’s coincide in U),
since otherwise, there will be cancellations in the series ) , . 9[Fy], in contradiction
with the second formula in (6.15). Assume without loss of generality that for all
k € J* we have E, NU = SGy,; thus, arguing as before, for all £ € I~ we must have
E,.NU=U~ S5Gy,.

We obtain that ELU = m[SGL] — n[U ~ SG}] for some nonnegative integers
n,m. Since (IE)LU = (m + n)[9,] and also (0E)LU = ®4[Eann] = [9n] in U,
we conclude m +n = 1. Hence either m =1 and n =0, or m = 0 and n = 1. On the
other hand, we know that EL.U =", . [Ex N U] =", cq- [Er N U], from which it
follows that J* has cardinality m and J~ has cardinality n. Namely, one of the sets J&
is empty, and the other contains one index only.

We conclude that the sum in (6.14) involves one index only, that is, there is only
one compact set £ in  x R such that (up to switching the orientation)

e =[E].
This concludes the proof. ([l

For later convenience, from now on we denote by E the closure of a precise repre-
sentative of the set found in Lemma 6.11.

Remark 6.12. — From the fact that (Q x R) NOE = ®(Taun) U A1 U Ay, we easily
see that m(F) = m(®(Xann)) which, by Lemma 6.9, is simply connected.

We denote by symg, (F) the set (symmetric with respect to the horizontal plane
R2x {0}) obtained applying to E the Steiner symmetrization with respect to R? x {0}.
Clearly symg (E) N (0PQ x R) = A; with A; defined as in (6.13). We define

(6.17) S := O(symy (E)) ~ (A1UAy), ST :=8n{z3>0}, S :=5n{z3<0}.

Since P(symgy (F)) < P(E) (here P(-) is the perimeter in R? [4]) we have H?(S) <
9{2((I>(iann)>-
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Lemma 6.13 (Graphicality of d(sym, (E)) and continuity up to the boundary)

Suppose that ma(I') < mi(T'1) +mi(T2) and let & € Py(T") be a MY solution
to (6.4). Let E be the finite perimeter set given by Lemma 6.11 and ST be as in (6.17).
Then there is ¢ € BV (int(x(E))) N C(x(E)) such that S* = S.g- In particular,
S*N(R? x {0}) = QN o(n(E)).

Proof. — Since E has finite perimeter, there exists a function ¢ € BV (int(r(E)))
such that S* = . [20]. So, we only need to show that ¢ is continuous (note that
7w(E) is a closed set). Take a point P’ in the interior of w(E); if P’ = 7(®(w)) for
some w, then w € ¥y, since 7(P(C;)) C 9N for i = 1,2 (recall that Cy and C5 form
the boundary of ¥,,,). If at none of the points of #~!(P’) N ®(X,,,) the tangent
plane to ®(3.,,) is vertical, then zﬂ/; is C* in a neighbourhood of P’, since it is the
linear combination of smooth functions (see the discussion after formula (6.21) below,
where details are given). Therefore we only have to check continuity of '[/; at those
points P’ for which there is P € 7=1(P’) N ®(X,un) such that ®(3,,,) has a vertical
tangent plane II at P.

Consider a system of Cartesian coordinates centered at P, with the (x,y)-plane
coinciding with II, the z-axis coinciding with the line 7=(P’), and let z = z(z,y)
(defined at least in a neighbourhood of 0) be the analytic function whose graph
coincides with @(fann). This map, restricted to the z-axis, is analytic and vanishes
at = 0; hence it is either identically zero or it has a discrete set of zeroes (in the
neighbourhood where it exists). We now exclude the former case: If z(-, 0) is identically
zero, it means that around P there is a vertical open segment included in 7=!(P’),

which is contained in ®(Xann). Let Q be an extremal point of this segment, and let I
be the tangent plane to ®(X,,,) at Q. This plane must contain as tangent vector the
above segment, hence Ilg is vertical and contains 7~!(P’). Choosing again a suitable
Cartesian coordinate system centered at () we can express locally the surface ®(Xann,)
as the graph of an analytic function defined in a neighbourhood of @ in Ilg, and so
the restriction of this map to 7~1(P’) is analytic in a neighbourhood of @, hence it
must be identically zero since it is zero in a left (or right) neighbourhood of Q. What
we found is that we can properly extend the segment PQ on the @ side to a segment
PR contained in ®(X,,,). This proves that ®(X,,,) N7~ 1(P’) is relatively open in
7~ L(P'). Since it is also relatively closed, it coincides with the whole line 7=1(P’),

which is impossible since ®(X,,,) is bounded.
Hence the zeroes of the function z(-,0) are isolated, so we have shown:

AssertioN A, Let P € 7= 1(P) N ®(Zaun). Then in a neighbourhood of P the only
intersection between ®(Xan,) and 71 (P') is P itself.

Now, we can conclude the proof of the continuity of the function {/; Write

ﬂ-il(P/) N (I)(iann) = {Q17Q27 . '7Q'rn} - Q X R
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It follows that
(6.18) 2(P) = H (= (PN E) = 3 05(Q))s
j=1

where (Q;)3 is the vertical coordinate of @; and
-1 if Qj_le CR3\ F and Qij+1 CFE,
(6.19) oj=4q1 ifQ; 1Q; C Fand Q;Q;11 CR?\E, Jj=1....m.

0 otherwise,

Let (P}) C int(m(E)) be a sequence converging to P’, and write 771 (P{) N®(Zann) =
{QF,Q5, . .. ,ank} C Q x R. With a similar notation as above, we have

(6.20) 20(P)) = H'(x~(P}) N E) Za

Now, if at every point (); the tangent plane to @(Eann) is not vertical, then ®(X,.,)
is a smooth Cartesian surface in a neighbourhood of @);, and so it is clear that, for £
large enough,

(6.21) m = my, Qf — Qj, o;? — 0 forall j=1,...,m,

and the continuity of ’(Z at P’ follows. Therefore it remains to check continuity in the
case that the tangent plane to some @); is vertical.

Let a be one of these points, with associated sign o € {0, 1}. By assertion A there
is § > 0 so that @ is the unique intersection between 7 Y (P') and ®(X,n,) with
vertical coordinate in [63 -4, @g + 0]. This means that the segments

N P)YN{Qs -6 <23 <Q3} and 7 '(P)N{Qs < x3 < Q3+ 5}

are contained in either int(E) or R3 \ E. In particular, there is a neighbourhood
U C Q of P/ such that U x {x3 = Qs — 0} and U x {z5 = Qs + 0} are subsets of
int(E) or of R® \. E. Suppose without loss of generality that both are inside R® \ F
(the other cases being similar), so that ¢ = 0. We infer that, for k large enough so
that P; € U, there is a finite subfamily {QéC cjeJyof {QF Q5. .., ank} contained
in {63 <5< Qs+ 0} and which satisfies the following: The sum in (6.20) restricted
to such subfamily reads as:

D o5(Q)s = (@) = (@ )s + -+ +(@5)s = (@),

jeJ
where J = {j1,j2,...,j1: 1 <ja <--- <ji}and (Q¥)s > (Q% )3 >--- > (QF)s >
( ;‘?1)3 (if ji = 1 necessarily 0;?1 = 0 and the sum is zero). We have to show that
this sum tends to 563 = 0 as k — +oo, which is true, since each Q;? tends to 6
Repeating this argument for each point @ with a vertical tangent plane to ®(X,ny),
the proof of continuity of ¢ in the interior of 7(E) follows.

Now, let P’ € 9(n(E)). If P’ € QN d(n(E)) then every point in 7~ (P') N ®(Xann)

has vertical tangent plane and we can argue as in the previous case. It remains to
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show continuity of {Z; on Or(E) NI In this case we exploit the fact that the interior
of ®(X,nn) is contained in Q x R. We sketch the proof without details since it is very
similar to the previous argument. Let P’ € 9PQ, thus 7—1(P') NT'; consists of two
distinct points Q1 and Q2. Let (P]) be a sequence of points in 7(E) converging to P.
For P, € 0P it follows 7~ 1(P]) NT; = {Q%, Q5} and the continuity of ¥ follows
from the continuity of ¢ on P2, whereas if P} is in the interior of 7(E) there holds
Y P NT = {QF,Q%, ... ,fonk} Using the continuity of ® up to C1, it is easily
seen that all such points must converge, as k — 400, either to Q1 or to Q2. Hence
we can repeat an argument similar to the one used before. (|

Levva 6.14. Suppose ma(T') < m1(T'1) +m1(T'2) and let € Po(T") be a MY solu-
tion to (6.4). Let E be the finite perimeter set given in Lemma 6.11 and let S be defined
as in (6.17). Then there is an injective map ® € H(Sann; R?) N CO(Sann; R3) which
maps 0Xann weakly monotonically to T' and such that &)(iann) =S, and furthermore

(6.22) H2(S) :/ |0, @ A By, ®|duw :/ |80, @ A Doy ®|dw = miy ().

ann ann

In particular, ® is a solution of (6.4).

Proof. — By Lemma 6.13 there is ¢ € BV (int(r(E))) N CO(w(E)) such that S* =
S As a consequence, for p € P we have 1(p) = ¢(p) and for p € QN I(n(E))

we have §(p) = 0.

By Lemma 6.9 7(E) is simply connected, and so the maps Ut 7(E) — R3 given
by e (p) = (p, izZ(p)) are disk-type parametrizations of S*. Moreover, ST and S~
glue to each other along (R? x {0}) Nd(symy (E)) = 31 U B2, where 3; and /35 are the
curves given by Lemma 6.10 .

Let (0,%) € Weony be a minimizer of F which satisfies properties (1)—(5) of The-
orem 5.1. Setting & := (1, 32) and extending v to zero in Q ~ w(E) (still calling ¢
such an extension), by minimality we get

2F(0,) < 25(5,9) = H*(9),

whence

(0:23)  25(0,6) < H(S) < IC@(Euma)) = [ 100, ® A OuyBldu = ma(T).

We are in the hypotheses of Lemma 6.6(a), therefore there exists a map P e Py(T)
parametrizing SwL(Q\E usg L O<E()) which is a minimizer of (6.4). In particular,
2F (0 ) = ma(T'), and all inequalities in (6.23) are equalities. We deduce also that
(5, 1) is a minimizer of F in Weopy, so that by Theorem 5.1 1 is analytic in int(r(E)).
As a consequence it belongs to W (int(7(E)); R?). Applying Lemma 6.5(a) and
Lemma 6.6(a), we get the existence of ® € Py(T') as in the statement, and we have
concluded. O
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Lemva 6.15. Suppose ma(I') < my1(T'1) + m1(T2) and let & € Py(T") be a MY
solution to (6.4). Let E be the finite perimeter set given in Lemma 6.11 and let S be

defined as in (6.17). Then ®(Xann) = S and in particular
E= SyMygy (E)

Proof. — By Lemma 6.14 we have H?*(S) = mq(T), from which it follows that
P(symy (F)) = P(E). Then we can apply [20, Th.1.1] to deduce the existence of
two functions f, g : 7(E) — R of bounded variation, such that 0*E = G; UG, (up to
H2-negligible sets). We will show that f = 1; and g = —TZ. To this aim, thanks again
to [20, Th. 1.1], we know that for a.e. p € w(E), the two unit (external to E') normal
vectors v/ = (], v, v]) and v, = WY, 08,09) to G and G, at the points (p, f(p))
and (p, g(p)), respectively, satisfy

(624) (V{,szv’/g];) = (Vlgvygafl/g)'

To conclude the proof it is then sufficient to show that f = —g a.e. on m(E): indeed
this would readily imply E = symg (F) and hence f = . Let p € int(w(E)); if

(625) ﬂ-il(p)mS:{Plap27"'7Pk}7

then for a.e. p € int(n(E)) it is k& < 2. Now we show that, for all p € int(n(F)),
if £k > 1, none of the points {Py, Ps,..., P;} has vertical tangent plane. Assume by
contradiction that P; has vertical tangent plane II;. In this case I1; NS consists, in
a neighbourhood U of Py, of at least 2 curves crossing transversally (see [35, §373])
at P;. These curves, by assertion A in the proof of Lemma 6.13 , intersect 7~ 1(p)
only at P;. Moreover, in a neighbourhood V of P, with UNV = @, II; NS consists
of (at least) one curve passing through P. This curve is locally Cartesian if 7=(p)
crosses S transversally in Ps, otherwise it is locally the union of two curves ending
at P, with vertical tangent plane, which lie on the same side of II; with respect to
771 (p). In both cases, we deduce that there is a point ¢ € II; N (Q x {0}) for which
7-1(q) intersects transversally S in at least three points. As a consequence, for all ¢’
in a neighbourhood of ¢ in Q, the line 7~1(¢’) intersects S at more than two points,
which is a contradiction. We have proved the following:

Assertion. — For all p € int(n(E)) the line 7=1(p) intersects S either transversally
at two points Py, Py, or at only one point P;.

Now we see that the latter case cannot happen. Indeed, first one checks that in this
case the intersection cannot be transversal,(??) and that 7~ (p) must be tangent to S
at P;. Let II; be the vertical tangent plane to S at P;. Let II{- be the vertical plane
orthogonal to II; passing through P;. In a neighbourhood of P;, the unique curve in
SNII{ must be the union of two curves joining at P;, and these curves must belong to
the same half-plane of II{- with boundary 7~!(p). As a consequence, if p’ € QNII;- is

(22)This is a consequence of the fact that the line 7~ 1(p) must lie outside the set E, with the
only exception of the point Pj. Indeed, otherwise, there must be some other point in Tl'_l(p) n.s,
E being compact in R3.
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in that half-plane, then 7= (p’) consists of at least two points; if p’ lies in the opposite
half-plane, then 7=1(p’) is empty. This means that necessarily p € dr(F). Namely,
the previous assertion can be strengthened to:

For all p € int(E) the line 7~ *(p) intersects S transversally at exactly two points
Pl, Ps.

The consequence of this is that f and g belong to Wb (int(7(E))) and are also
smooth in int(7(E)). Indeed, let p € int(7(E)), so f(p) # g(p), and

(6.26) = p) NS ={(p, f(p)), p,9(p))}-

Since S is locally the graph of smooth functions around (p, f(p)) and (p, g(p)), these
functions coincide with f and g, respectively. We can now conclude the proof of the
lemma: let us choose a simple curve « : [0,1] — 7(E) with «(0) € 9PQ and a(1) = p
such that (6.24) holds for H* a.e. p € a([0,1]). Since foa and go « are differentiable
in [0, 1], condition (6.24) uniquely determines the tangent planes to Gy and §,, and
hence it implies that the derivatives of f o & and g o « satisfy

(6.27) (foa)(t)+ (goa)(t) =0, for a.e. t € [0, 1].

By continuity of f and g one infers foa+goa = c a.e. on [0, 1] (actually everywhere
since f + ¢ is continuous), for some constant ¢ € R. To show that ¢ = 0 it is sufficient
to observe that f o a(0) = ¢(a(0)) and g o a(0) = —p(a(0)). Hence f(p) = —g(p),
and the thesis of Lemma 6.15 is achieved. ]

We are now in a position to conclude the proof of Theorem 6.8.

Proofof Theorem 6.8. — Property (1) follows by Lemma 6.9 and Lemma 6.10. Prop-
erties (2)—(4) follow by Lemma 6.13 and Lemma 6.15. To see that 3; are C° it is
sufficient to observe that, since ST and S~ are Cartesian surfaces, their intersection
coincides with the set S N {x3 = 0} which, by standard arguments, is the image of
the zero-set of ®3, which is smooth. O

Tueorem 6.16. — Assume n =2 and I'; not planar for j =1,2. Then

(6.28) 2 (s,C)Hel%/IVlcom F(s,¢) = mao(I).
Proof
Step 1: 2ming ¢cyew,,,., F(s,¢) <ma(I'). — Suppose first mo(I') < my (1) +mi(Iz).
Let ® € Po(T") be a MY solution to (6.4) and let S := ®(X,,n). By Theorem 6.8 the
following properties hold:

— SN(R2 x {0}) = B1UBy with 81 and B disjoint embedded analytic curves joining
q1 to ps and g2 to pi, respectively;

— S is symmetric with respect to R? x {0};

— for i = 1,2 the closed region E; enclosed between 992 and j3; is convex;

— 5T = Sn{xs > 0} is the graph of ¢ € WL (U)NCO(T), where U = Q~ (E; UE»)
is the open region enclosed between 9P and 31 U fs.
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Let (0,1) € Weony be given by

0 inQ~\U,
o:=(01,02) and =1 -
¥ in U,

where ;([0,1]) = §; for i = 1,2. Then clearly ST = Swl_(m) and

. 2 1
pmn (s, < Flow) =K (S7) = 5ma(I).

Now, suppose mo(I') = mi(I'1) + mi(I'2). For j = 1,2, let ®; € P(T;) be a
solution to (6.1) and S; := ®;(B;). Let D; be the closed convex hull of T';: clearly
Dy N Dy = @. By Lemma 5.4 (with F = Q) each S; satisfies the following properties:

~ 5; N (R? x {0}) = B; C Dj is a simple analytic curve joining p; to g;;

— S, is symmetric with respect to R? x {0};

- S;T = SN {xs > 0} is the graph of a function {bvj e WhL(U;) n C°(U;), where
U; C D; is the open region enclosed between GJDQ and f;;

— QN Uj is convex.

Let (0,1) € Weony be given by

0 inQ~(U;UU:
o:=(01,00) and =< _ n QN (U D),
Y; inUj for j =1,2,
where o1([0,1]) := p1gz and 09([0,1]) := B2 U @p1 U B1. Then St := S U SS =
) and

g'gb L(Q\E(0o)

(S’C)nel%mm F(5,¢) < F(o,90) = H*(ST) = %(m1(r1) +mq(T2)) = %WQ(F),

and the proof of step 1 is concluded.

Step 2: 2ming cyew,.,, F(s,¢) = ma(T). Let (0,1%) € Weony be a minimizer satis-
fying properties (1)—(5) of Theorem 5.1. If E(o1)UE(02) = &, by step 1 we can apply
Lemma 6.6 and find an injective parametrization ® € Po(T") such that ®;(0Xan,) =T

weakly monotonically, ®(X,nn) = Gy U G_y, and

2F (o, 9) = / |0, @ A Oy, @|dw = mia(T).
Sann

If instead E(o1) U E(02) # @, similarly we find injective parametrizations ®; €

P1(T'1) and @5 € P1(T'2) such that ®;(9B;1) = I'; weakly monotonically for j = 1,2,

(I)l(Bl) @] (I)Q(Bl) = Sd, @] S,w, and

25 (0, 1)) = /

By
> mq (1) +mq(T2) = mao(T).

|8w1 [N 8w2<1>1|dw + / |6w1<1>2 A 8w2¢2|dw
By

This concludes the proof. O

Now the proof of Theorem 6.4 is easily achieved.
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Proofof Theorem 6.4
(i) Let ® € Po(T"), S, ST, S~ be as in the statement. By arguing as in the proof

of Theorem 6.16 we can find (o,1) € Weony such that S+t = inl_(m). Then by
Theorem 6.16 we have
(6.29) Fo0) = smo(M) = min  F(s.Q)
. = - = min .
i 2m2 (51<)€Wconv *

Hence (0,1) is a minimizer for F in W; moreover by the properties of S it also satisfies
properties (1)—(5) of Theorem 5.1.

(i) Let ®; € Py(Ty), S; for j = 1,2, ST, S~ be as in the statement. Again
arguing as in the proof of Theorem 6.16, we can find (o,%) € Weony such that S* =
giwL(m) and (6.29) holds, so that (o,%) is a minimizer of F in W satisfying
properties (1)—(5) of Theorem 5.1.

(iii) Let (0,1%) € Weony be a minimizer of F in W satisfying properties (1)—(5) of
Theorem 5.1. Let also

S = 91/)L(Q\E'(U)) U gfwu_(sz\E(a))'
Suppose first E(o1) N E(o2) = @. Then there is ® € P,(I") which is a MY solution to

(6.4) such that ®(X,,,) = S: indeed, to see this, it is sufficient to apply Lemma 6.6,
since by Theorem 6.16 we have

(6.30) 2F (0, 0)) = mo(T).

Now, suppose E(o1) N E(02) # &; then with a similar argument we can construct
®; € P1(T;) for j = 1,2 solutions to (6.1) such that ®;(B;)U®P2(B;) = S. The proof
is achieved. 0

7. FINAL REMARKS AND OPEN PROBLEMS

In this section we describe some motivations of the present study, possible appli-
cations and related problems. Furthermore, we briefly comment on the hypotheses of
our setting and on possible extensions and generalizations of our results.

Connection with the Plateau problem in high codimension. The main motivation of
our study is related to the classical non-parametric Plateau problem in codimension
greater than 1. Specifically, our setting is suited for the description of the singular
part of the L!-relaxation A(-,U) of the Cartesian 2-codimensional area functional

(7.1) / \/1+|Vu1|2+\VUQ|2+(detVu)2 dz, u = (u1,us) € CHU;R?),

U
computed on nonsmooth maps. The functional A(-,U) computed out of C*(U, R?) is
mostly unknown [1, 27], up to a few exceptions, see [12, 7, 39, 8]. One of the remarkable

exceptions is given by the vortex map uy : By(0) \ {0} C R? — R?, uy () := z/|x|:
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Ficure 6. The domain Rsy (example of the vortex map wuy ). The
graph of ¢ on OP Ry, is emphasized (in particular ¢ = 0 on the
lower horizontal side), together with an admissible curve o, which
in this specific case partially overlaps the Dirichlet boundary. In this
example n = 1.

in this case it can be proved [9, 10, 11] that

(7.2) A(uV;Bg(O)):/B(O)\/l+|Vuv|2 do + inf F(o, 1),

where F(o, ) is as in (1.7) with Q@ = Ryy = (0,2¢) x (—1,1) and the Dirichlet datum
@ : ORop — [0, +00) is given by

(7.3) ©(z1,29) :=

{w/l — 22 on 0P Ry,
0

on (90R23,

with 0P Ryy = ({0} x (—=1,1)) U ([0,2¢] x {—1}) U ({26} x (—1,1)) and 0°Ryy =
(0,2¢) x {1}. Here the infimum is taken over all pairs (o,) € ¥ x BV (Ry) with o
a unique curve in Ry joining (0,1) to (2¢,1) and ¢ = 0 a.e. in E(c). This setting is
similar to the catenoid case, with the notable difference that the Dirichlet boundary
is here extended to include the basis (0,2¢) x {—1} and the free curve is just one
simple curve o (see Figure 6).

To construct a recovery sequence for (7.2), it is crucial to analyze the existence
and regularity of minimizers of F. In particular, it is necessary to show that there is
at least one sufficiently regular minimizer (o,). The shape of the curve o and the
graph of 1) are related to the vertical part of a Cartesian 2-current in B,(0) x R? ¢ R*
which arises as a limit of (the graphs of) a recovery sequence (vy) C C1(By(0); R?)
for A(uy; B(0)).

According to what happens for the catenoid, also in this case we have a dichotomy
for the behaviour of minimizers (o,). When ¢ > 0 is small, the solution (o,%)
consists of a curve ¢ joining p and ¢ having relative interior contained in Rop, and

JEP — M., 2024, lome 11



1092 G. Bereerring R, Marziant & R, Scara

so that F(o) is convex; at the same time the graph of ¥ on Ry, ~\ E(0) is a sort of
half-catenoid, so that if we double it considering also its symmetric with respect to
the plane containing Rop, it becomes a sort of catenoid spanning two unit circles and
constrained to contain the segment (0,2¢) x {—1}. When instead ¢ is larger than a
certain threshold, the solution reduces to two circles spanning the two unit parallel
circles. Notice however that in the setting of (7.3) on a part of the Dirichlet boundary
we have ¢ = 0. This leads to a number of additional difficulties which must be treated
separately with approximation techniques (we refer to [10] for the details).

Another relevant case in which the relaxation is known, is for the so-called triple
junction function ur : By(0) C R? — R?, a map taking only three values, vertices
of an equilateral triangle of unit side-length (see [12, 39]). Also in this case, in order
to compute the singular contribution of A(ur; B¢(0)), a Cartesian Plateau problem
with a partial free boundary must be solved. Following our approach, it is possible to
reduce this problem to our setting. In general,(*®) given Q C R2 and u € BV (Q;R?),
the singular contribution of the relaxed area functional A(u;€) coincides with the
mass of vertical parts in the optimal Cartesian current 7, with underlying map u
that arises as limit of the graphs G, of a recovery sequence vy : Q — R2. Generally,
a few can be said on the structure and properties of these vertical parts. However,
for optimal Cartesian currents T, as above, they enjoy minimality properties under
suitable constraints. In the aforementioned known cases (a suitable projection% of)
these vertical parts is exactly the area minimizing solution of the Cartesian Plateau
type problem with partial free boundary.

We emphasize that understanding the features of vertical parts of optimal Cartesian
currents for the relaxed graph area is crucial in order to detect the behaviour of the
area functional. In more general settings and for general maps u : Q C R? — R? only
partial results are currently available, and specifically, without a finer analysis of the
singularities of these Cartesian currents only upper and lower bounds can be obtained
(see, e.g., [15, 40], where some estimates are given for nonsmooth S!-valued maps).

Hypotheses. — We assume that  is convex. Convexity is crucial to ensure existence
of solutions even in the classical non-parametric setting with no free boundary. Indeed,
there are examples in which € is not convex, and a minimizer of the area functional
does not attain the Dirichlet boundary datum.

We also point out that we assume injectivity of the free-boundary curves o; (see
hypothesis (i) in the introduction). This assumption is crucial in order to define the
sets E(0;) and then to solve the problem in a non-parametric form. However, if one
allows o; to have self-intersections, one can look for a disk spanning the curve T,

(23)We restrict the discussion to the 2-dimensional case (and to codimension 2), although this is
valid for any dimension and codimension.

(24)These currents live in Q x R2, but stands above 1-dimensional subsets of Q, so that, with
suitable techniques, they can be identified with integral currents of codimension 1 (we refer to
[9, 10, 11, 12, 39] for more detail).
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in (1.8) which is not a Jordan curve anymore. In this case we have to face a singular
Plateau problem such as the one recently studied in [21] using results of [33]. Notice
that in this case the curves o; will be also planar and some additional hint to face
this problem can be found in [19].

Further developments. In the present analysis we have assumed that the free bound-
ary curves are included in a plane. Of course, one may ask for domains €2 which are
subset of a manifold (not necessarily a plane), leading to additional difficulties, since
the symmetrization with respect to the plane is strongly used in our arguments.

Furthermore, the correspondence between the Meeks and Yau solutions is obtained
in the special cases n = 1, 2, although we believe that it holds also for n > 3. However,
due to technical difficulties which renders the setting much more involved, we leave
this generalization to future developments.

A further interesting question is the following. Suppose that 92 is smooth; then
one may ask whether each free boundary dE(o;) is smooth up to 0, and moreover
if there is some special kind of contact angle condition at 052, due to minimality. This
question should need further investigation in the future.

The problem considered in this paper seems not directly related to the partial
wetting phenomenon, an interesting behaviour of soap films pointed out in [3], see also
[17] and [13], [14], where the soap film (typically in a non Cartesian context) does not
attain the boundary condition, leaving unwetted a part of the wire I'. However, when
the boundary datum ¢ is allowed to vanish (a case not covered by the results of the
present paper), as in the case of the “catenoid” constrained to contain the segment
[0,2¢] x {—1} mentioned above, it may happen that the singular solution consisting
of the two half-disks does not wet that segment.

We conclude this section with a couple of additional examples which are open prob-
lems and we consider to be interesting, relating the problem (and suitable variants)
studied in this paper with the relaxation of the area functional (7.1) in dimension 2
and codimension 2.

Let @ : B;(0) ~ {0} C R? — S' be the map defined in polar coordinates

a(p7 9) _ 621'97

i.e., the vortex map of degree 2. Our conjecture is that the relaxed area functional
A(u; Be(0)) is given by

(7.4) / 1+ | VA2 de +inf{F) (0,91) + F2(5,12)},
By (0)

where both &;, i = 1,2, are as the functional in (1.7), but applied to different domains
and variables. Specifically, F; is applied to Q = Ry, and ¢, 0 = (01) and ¥ = ¢
are exactly as in the case of uy (see (7.2) and (7.3)). Instead, for Fa, Q@ = Ry
while ¢ = (71,02) = (01,02), and ¢ are as in the example of the catenoid in the
introduction. Notice that minimizations of 1 and F5 are not independent each other,
since o; = 7.
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Another nontrivial example is given by a map u € BV (B(0); R?) which we assume
to jump on three radii of By(0) (not necessarily at 120°-degrees angles). Depending on
the trace values of u on these radii, we consider the Plateau problem with partial free
boundary as described below: we take as domain 2 a triangle and o = (01,09, 03)
are three curves in ) connecting the three pairs of vertices. Let ¢ be a boundary
datum on 99 that is null on the three vertices of ), and denote by H(o;) the region
enclosed between o; and the side [; of © with the same vertices. We conjecture that
the singular contribution in A(wu; Be(0)) is related to the infimum of the quantity

[~ (U?:l H(a;))|

3
# 3 VIO ot @) =t )+ [ 6ol ).

APPENDIX

We recall here some classical facts about convex sets and Hausdorff distance.
If A, B C R? are nonempty, the symbol dy (A, B) stands for the Hausdorff distance
between A and B, that is

dr (A, B) := max{sup,c 4 dp(a), supyep da(b)},

where dp(-) is the distance from the nonempty set F' C R2. If we restrict dg to the
class of closed sets, then dy defines a metric. Moreover:

(H1) da(z) < dp(x) +du (A, B) for every x € R?%;

(H2) If X := {K C R?nonempty and compact} then (X,dy) is a complete metric
space;

(H3) If A, B € X are convex then dy (A, B) = dy(0A, dB);

(H4) If A € X is convex, then there exists a sequence (A4,), C X of convex sets
with boundary of class C*° such that dy(4,,A) — 0 as n — +o0;

(H5) Let (A,), be a sequence of nonempty closed convex sets in R?, A C R? is
nonempty and dg(A,, A) — 0 as n — +00. Then A is convex as well;

(H6) Let A,, A € X be convex such that dg(A,, A) — 0 and let « € int(A); then
x € A, for all n € N sufficiently large;

(H7) Let A and B be nonempty closed subsets of R? with dg (A4, B) = . Then
A C B and B C AT where, for all nonempty E C R?, we have set

Ef = {2z e R?: dg(z) <&}
Remark A1 Property (H1) is straightforward, while (H2) is well-known. Also
property (H3) is easily obtained (see, e.g., [41]). Concerning property (H4) we refer
to, e.g., [6, Cor.2]. To see (H5), from (H1) we have that da, — da pointwise, and

therefore since dg4, is convex, also dg is convex, which implies A convex.®®) Let us
now prove (H6) by contradiction; assume that there exists a subsequence (ny) such

(25)Gince A is closed, it coincides with the sublevel {z : d(z, A) < 0}, which is convex.
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that da, (z) > 0 for all k € N; then = € R* \ A,,, da, (z) = daa,, (z), and
using (H1) twice,

o, (@) + A5 (0An,,04) = da, (2) + diz(An,. A)

doa(z) < d
< da(z) +2du(A,Ay,) =2du (A Ay,) — 0,
the first equality following from (H3). This implies € A, a contradiction. Finally
property (H7) is immediate. Indeed if a € A then
dg(a) < SlelgdB(.’E) <dpy(A,B)=¢,

hence a € B and so A C BY. In a similar way we get B C At.
We also recall the following standard result.

Lemma A2, — Let K € X be convexr with nonempty interior. Then there exists a
1-periodic map & € Lip(R; R?), injective on [0,1), such that 5([0,1]) = 0K and

~ -~

t
o(t) =0(0) + 6(3)/ F(s)ds, F(t) = (cos(0(t)), sin(0(t))) for all t €]0,1],
0
with 0: R — R a non-decreasing function satisfying g(t +1)— @(t) =27 for allt € R,
and £(0) := fol |6’(s)|ds the length of the curve.

Notice that o is differentiable a.e. in R and ¢'(t) = ¢(5)7(t), so that the speed
modulus of the curve |¢/(t)| = ¢(7) is constant.

Proof. We start by approximating K by convex sets with C°° boundary. By (H4)
for all n € N there is a convex compact set K,, C R? with boundary of class C*> and
such that dy (K., K) — 0 as n — +o0. For any n € N we let 5,, € C°(R; R?) be a
1-periodic function injectively parametrizing 0K, on [0, 1); therefore 7, ([0, 1]) = K,
and

~

an(t):371(0)4%(371)/0 An(s)ds,  An(t) = (cos(Bn (1)), sin(Bn())) Ve € [0,1],

where 6,, € C> (R) is a non-decreasing function with én(tJr 1) f@\n(t) =2, for all teR.
In view of (H2), by construction we can find z¢g € K, R > r > 0 such that B,(z¢) C
K,, C Bpg(zo) for all n € N, and therefore (0B, (z0)) < £(7,) = H'(9K,) <
HY(OBRr(z0)); where the last inequality follows since 0K,, = mx, (0Br(x¢)) and from
the fact that, since K,, is convex, the projection mg, on K, does not increase the
lengths, thus, up to subsequence, £(7,) — m € (0,4+00) as n — +o00. Moreover, up to
subsequence, we might assume 7,,(0) — p € K. On the other hand, observing that

41 41
/ 67, (s)|ds = / 0! (s)ds = 2m, for all t € R,
t t

we have that, again up to subsequence, b, =20 ¢ BVioc(R) and pointwise (by the
Helly selection principle), with 6 a non-decreasing function with (¢ + 1) — 6(¢t) = 27
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~ ~

for all t € R. We also have 7, = 7 in BV,.(R; R?) where 7(t) = (cos((t)), sin(6(t))).
We let & € Lip(R; R?) be the 1-periodic curve, injective on [0, 1), defined as

(A1) a(t)=p+ 771/0 F(s)ds VteR.

Note that m = £(5). Then clearly &,, — & in WH1([0, 1]; R?), since

1
167 = &'l (o, 1m2) :/ [(@n)7n () — £(a)7(t)|dt
(A.2) 0

sqaa»—£@n+f@yé|@4ﬂ—ﬁ@»ﬁ—+o

By the continuous embedding W1(]0, 1];R?) c C°([0,1]; R?) (and by 1-periodicity,
on R) we also get 0, — & uniformly on [0, 1]. This, together with property (H3) gives

du(0K,5(0,1])) < dg (0K, 0K,) + dr (5,([0,1]),5([0,1])) — 0,

which in turn implies 7([0,1]) = OK. The injectivity of & on [0,1) follows from
expression (A.1), the fact that m > 0 and that K is convex with nonempty interior.
O

CororLrary A.3. Let K € X be convex with nonempty interior. Let q,p be two
distinct points on 0K, and let pg C OK be the relatively open arc with endpoints q
and p clockwise oriented. Then there exists an injective curve o € Lip([0, 1]; R?) such
that 0((0,1)) = pg, 0(0) = ¢, o(1) = p, and

t
o) =q+ o) [ A(s)ds, 1(t) = (cos(O(t)). sin(o(t))) for all t€ [0.1),
0
with 8 a non-decreasing function satisfying 6(1) — 6(0) < 2.

Proof. Lemma A.2 provides & € Lip([0, 1]; R?) parametrizing K. Then there are
two values t1,t2 € [0,1], t1 < ta, with ¢ = &(t1) and p = &(t2) so that the existence
of o follows by reparametrizing the interval [t1, t2], and all the properties follow from
the corresponding properties of 7. (|
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