Financial order flow exhibits a remarkable level of persistence, wherein buy (sell) trades are often followed by subsequent buy (sell) trades over extended periods. This persistence can be attributed to the division and gradual execution of large orders. Consequently, distinct order flow regimes might emerge, which can be identified through suitable time series models applied to market data. In this paper, we propose the use of Bayesian online change-point detection (BOCPD) methods to identify regime shifts in real-time and enable online predictions of order flow and market impact. To enhance the effectiveness of our approach, we have developed a novel BOCPD method using a score-driven approach. This method accommodates temporal correlations and time-varying parameters within each regime. Through empirical application to NASDAQ data, we have found that: (i) Our newly proposed model demonstrates superior out-of-sample predictive performance compared to existing models that assume i.i.d. behavior within each regime; (ii) When examining the residuals, our model demonstrates good specification in terms of both distributional assumptions and temporal correlations; (iii) Within a given regime, the price dynamics exhibit a concave relationship with respect to time and volume, mirroring the characteristics of actual large orders; (iv) By incorporating regime information, our model produces more accurate online predictions of order flow and market impact compared to models that do not consider regimes.
Tsaknaki, I., Lillo, F., Mazzarisi, P. (2024). Online learning of order flow and market impact with Bayesian change-point detection methods. QUANTITATIVE FINANCE, 1-16 [10.1080/14697688.2024.2337300].
Online learning of order flow and market impact with Bayesian change-point detection methods
Tsaknaki, Ioanna-Yvonni;Mazzarisi, Piero
2024-01-01
Abstract
Financial order flow exhibits a remarkable level of persistence, wherein buy (sell) trades are often followed by subsequent buy (sell) trades over extended periods. This persistence can be attributed to the division and gradual execution of large orders. Consequently, distinct order flow regimes might emerge, which can be identified through suitable time series models applied to market data. In this paper, we propose the use of Bayesian online change-point detection (BOCPD) methods to identify regime shifts in real-time and enable online predictions of order flow and market impact. To enhance the effectiveness of our approach, we have developed a novel BOCPD method using a score-driven approach. This method accommodates temporal correlations and time-varying parameters within each regime. Through empirical application to NASDAQ data, we have found that: (i) Our newly proposed model demonstrates superior out-of-sample predictive performance compared to existing models that assume i.i.d. behavior within each regime; (ii) When examining the residuals, our model demonstrates good specification in terms of both distributional assumptions and temporal correlations; (iii) Within a given regime, the price dynamics exhibit a concave relationship with respect to time and volume, mirroring the characteristics of actual large orders; (iv) By incorporating regime information, our model produces more accurate online predictions of order flow and market impact compared to models that do not consider regimes.File | Dimensione | Formato | |
---|---|---|---|
QF_2024.pdf
accesso aperto
Descrizione: Versione pubblicata
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
3.13 MB
Formato
Adobe PDF
|
3.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1275957