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Financial order flow exhibits a remarkable level of persistence, wherein buy (sell) trades are often
followed by subsequent buy (sell) trades over extended periods. This persistence can be attributed to
the division and gradual execution of large orders. Consequently, distinct order flow regimes might
emerge, which can be identified through suitable time series models applied to market data. In this
paper, we propose the use of Bayesian online change-point detection (BOCPD) methods to identify
regime shifts in real-time and enable online predictions of order flow and market impact. To enhance
the effectiveness of our approach, we have developed a novel BOCPD method using a score-driven
approach. This method accommodates temporal correlations and time-varying parameters within
each regime. Through empirical application to NASDAQ data, we have found that: (i) Our newly
proposed model demonstrates superior out-of-sample predictive performance compared to existing
models that assume i.i.d. behavior within each regime; (ii) When examining the residuals, our model
demonstrates good specification in terms of both distributional assumptions and temporal correla-
tions; (iii) Within a given regime, the price dynamics exhibit a concave relationship with respect to
time and volume, mirroring the characteristics of actual large orders; (iv) By incorporating regime
information, our model produces more accurate online predictions of order flow and market impact
compared to models that do not consider regimes.

Keywords: Regime switching models; Bayesian methods; Price impact; Metaorders; Online learn-
ing algorithm

1. Introduction

The study and modeling of order flow and market impact in
financial markets hold paramount importance for understand-
ing the incorporation of private information into prices and
designing effective trading algorithms that consider transac-
tion costs. A substantial body of literature (see for exam-
ple Bouchaud et al. (2009) and Lillo (2023) and references
therein) has revealed that the joint modeling of impact and
order flow is more intricate than initially presumed.

The persistence and autocorrelation of signed trade order
flow† have been extensively documented since the works of
Lillo and Farmer (2004) and Bouchaud et al. (2004). This per-
sistence aligns with a long memory process, suggesting that
a realistic market impact model should combine statistically
efficient prices with correlated order flow. The introduction

∗Corresponding author. Email: ioannayvonni.tsaknaki@sns.it
† I.e. the sequence of signed trade volume, positive (negative) when
buyer (seller) initiated.

of transient impact models, also known as propagator models
(Bouchaud et al. 2004), successfully accomplishes this goal.
Additionally, empirical evidence has attributed the temporal
persistence of order flow primarily to order splitting, as dis-
cussed in Tóth et al. (2015). Order splitting refers to the
common practice of large investors incrementally executing
their orders, termed ‘metaorders,’ through several smaller
trades known as ‘child orders.’ The model proposed by Lillo
et al. (2005) quantitatively establishes a relationship between
the autocorrelation of order flow and the distribution of
metaorder sizes. In essence, this model postulates that the
strong serial dependence arises from the optimal execution
strategies employed by institutional investors, which leads to
persistent order flow.

From an econometric perspective, this notion might
be connected to the well-known fact (see Granger and
Hyung 1999, Mikosch and Starica 1999, Diebold and
Inoue 2001) that long memory time series can be (approxi-
mately) generated by regime-shift models, where each regime
exhibits short memory and heterogeneous lengths. Regime
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shift models gained popularity around two decades ago when
they were proposed to explain the long-range memory of
volatility, as seen in Diebold and Inoue (2001).

This paper proposes to use regime shift models to describe
order flow time series, with the objectives of: (i) econometri-
cally explaining the long memory of order flow; (ii) enhancing
the prediction of order flow and price dynamics through
detected regimes; and (iii) suggesting a connection between
regimes and the execution of metaorders. Unlike many con-
ventional regime shift approaches that require a predeter-
mined number of regimes (e.g. Hidden Markov Models), we
focus on a model that allows online detection of change-points
(CPs) to identify the occurrence of new regimes. Existing
algorithms typically operate offline, recursively segmenting
the time series ex-post into increasingly smaller regimes.

In this paper, we specifically concentrate on online CP
detection, employing Bayesian approaches. The Bayesian
framework is well-suited for quantifying our uncertainty
regarding CPs using the posterior distribution, as illustrated
in Ghahramani (2015). We primarily consider the class of
algorithms known as Bayesian Change-Point Detection Meth-
ods (BOCPD), pioneered by Adams and MacKay (2007) as
an improvement on the ideas developed by Fearnhead and
Liu (2007). Since 2007, BOCPD and its extensions have
found applications in various financial settings. Most appli-
cations have focused on stock returns, as demonstrated in
Fan and Mackey (2017), Lleo et al. (2020) and Zhao et
al. (2022), and more recently, Lleo et al. (2022, 2023) uti-
lized BOCPD as an exit-entry model for long-short prediction
in the stock market. The work by Fan and Mackey (2017)
extended the BOCPD approach to the multi-sequence set-
ting to analyze changes in 401 U.S. stocks within the S&P
500 index. BOCPD utilizes a message-passing algorithm to
recursively compute the posterior distribution of the time
since the last CP, termed the ‘run length’. This elapsed time
is continuously updated upon receiving new data points. To
perform online inference, the underlying predictive model
(UPM) is computed, representing the distribution of data
given the current run length. For instance, the UPM may
assume a Gaussian model with different means across
regimes.

In the BOCPD model, the data is assumed to be indepen-
dently and identically distributed (i.i.d.) within each regime.
However, this assumption is unrealistic for most financial
time series. In this work, we extend BOCPD to accommo-
date Markovian data within each regime. While Xuan and
Murphy (2007) consider the correlation structure of multi-
variate time series, their CP detection algorithm is offline.
To the best of our knowledge, this is the first work that com-
bines an online learning algorithm for CPs with a Markovian
data structure. Furthermore, we propose a second extension
of the BOCPD algorithm that relaxes the assumption of con-
stant parameters within a regime, allowing for time-varying
autocorrelation. To achieve this, we employ the class of Score
Driven models introduced by Creal et al. (2013) and Har-
vey (2013), which provide an observation-driven framework
for real-time learning of time-varying parameters. Thus, our
newly proposed method combines the online CP detection
approach of BOCPD with the online learning of time-varying
autocorrelation parameters within each regime.

We present an empirical application of the proposed meth-
ods using order flow samples from stocks traded on NAS-
DAQ. In an out-of-sample forecasting exercise, we find that
the Score-Driven-based method outperforms other models,
including autocorrelated time series models without regimes.
Our analysis demonstrates that the model is correctly speci-
fied, and the residuals within each regime exhibit no corre-
lation. By investigating the price dynamics during identified
regimes, we discover that they follow concave functions of
time, with the total price change in a regime also exhibiting
a concave relationship with volume. These findings resemble
those observed for real metaorders, consistent with the square
root impact law. Finally, we demonstrate that knowledge of
order flow regimes can be effectively utilized to improve pre-
dictions of order flow and price dynamics. We accomplish
this by exploiting the well-known correlation between order
flow and simultaneous/future price changes through market
impact.

The paper is organized as follows: In section 2, we present
the dataset, the variable of interest, and provide the motiva-
tion for applying a regime shift model to order flow time
series. Section 3 covers the methodological aspects of the
paper, outlining the main properties of BOCPD and introduc-
ing the two proposed extensions. In section 4, we describe
the estimation results of the models on NASDAQ data and
analyze the obtained findings. We examine the average price
dynamics during an order flow regime and quantify the rela-
tionship between the total price change and the net order flow
exchanged within a regime. Moreover, it is presented the fore-
casting analysis of order flow and the correlation with price
dynamics through market impact. Finally, in section 5, we
draw conclusions and offer suggestions for further research.

2. Data set and motivation

In this paper, we consider the order flow of trades and in par-
ticular the aggregated signed volume. Let M be the number
of trades in a given day and let vi (i = 1, . . . , M ) the signed
volume (positive for buyer initiated and negative for seller
initiated trades) of the i-th trade and let us indicate with N
the number of trades we aggregate, so that our time series
is composed by T = �M/N� observations. The time series
of interest is the aggregated order flow xt on the interval
N ∩ [N(t − 1) + 1, N(t − 1) + N] given by

xt =
N∑

j=1

vN(t−1)+j, t = 1, . . . , T . (1)

Our data set consists of executed orders during March 2020
for Microsoft Corp. (MSFT) and of December 2021 for Tesla
Inc. (TSLA). In order to investigate the role of aggregation
time scale, we choose N = 240 and N = 730 for TSLA and
N = 400 and N = 1200 for MSFT, which, in both cases
correspond to an average time interval of 1 and 3 minutes,
respectively. The length of the two time series is 8686 data
points for 1 minute and 2856 data points for 3 minutes of
TSLA and 8723 data points for 1 minute and 2908 data points
for 3 minutes of MSFT. The choice of 1 and 3 minutes is of
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Figure 1. Autocorrelation function of the order flow aggregated at the 3 minute time scale corresponding to N = 730 executions for TSLA
(a), and N = 1200 executions for MSFT (b).

course arbitrary. However we decided to choose these interval
lengths in order to avoid any microstructure noise but being
still at high frequency.

To motivate our analysis, figure 1 shows the autocorrela-
tion function of the order flow for TSLA and MSFT at the
3 minutes aggregation scale. Consistently with the literature
(see, e.g. Lillo and Farmer 2004, Bouchaud et al. 2018), we
observe that the autocorrelation function in all the cases has
a slow decay. i.e. a buy (sell) trade is more likely followed
by a buy (sell) trade. More quantitatively, it has been docu-
mented in many papers (see Bouchaud et al. 2004, Lillo and
Farmer 2004, Bouchaud et al. 2006, 2009, Yamamoto and
Lebaron 2010, Tóth et al. 2015, Taranto et al. 2018a, 2018b)
that the autocorrelation function of trade signs ρ(τ) decays
asymptotically as a power law with an exponent smaller than
one

ρ(τ) ∼ 1

τ γ

where γ < 1 which implies that the time series is long
memory with a Hurst exponent H = 1 − γ /2 > 1/2.

The origin of this large persistence has been investigated
both empirically and theoretically. Making use of labeled data
allowing to identify the market member initiating each trade,
Tóth et al. (2015) empirically showed that the long-range per-
sistence observed at the London Stock Exchange is strongly
driven by order splitting, i.e. the same trader sequentially plac-
ing trades with the same sign, very likely as part of an optimal
execution program. On the contrary, herding, i.e. groups of
investors trading in the same direction in the same period,
plays a much minor role.

From a theoretical point of view, the connection between
order splitting and long memory of order flow has been elu-
cidated by Lillo et al. (2005) (LMF). They proposed a simple
model that postulates that market participants who intend to
execute large orders split them into smaller orders and trade
them incrementally. The large orders are called metaorders
and the small trades in which they are split and sequentially
traded are termed child orders. Under the assumption that

metaorders are randomly sampled from a size distribution
pL (L ∈ N), the LMF model predicts the form of the auto-
correlation function of trade signs. In particular, when the
distribution pL is a power law

pL = α

L1+α
(2)

then the autocorrelation function of trade signs decays asymp-
totically as

ρ(τ) ∼ 1

τα−1
(3)

i.e. the model predicts that γ = 1 − α. Interestingly, very
recently Sato and Kanazawa (2023) theoretically showed that
predictions of the LMF model remain valid also when there is
heterogeneity in trading frequency and size distribution across
market participants.

The empirical validation of the LMF model poses some
challenges because of the need for complete information on
metaorders traded in the market. Lillo et al. (2005) used
off-market trades as a proxy of metaorders. An alternative
to such proxy is suggested by Vaglica et al. (2008), Moro
et al. (2009) and Vaglica et al. (2010), who proposed seg-
mentation algorithms and Hidden Markov Models to iden-
tify metaorders from brokerage data. Without relying on
noisy proxies, Bershova and Rakhlin (2013) and Zarinelli et
al. (2015) used private data of real metaorders by financial
companies to test the power law hypothesis. In such a case,
the results lacks generality since information on metaorders
is company-specified. Recently, Sato and Kanazawa (2023)
used account-level data of the whole Tokyo Stock Exchange
to directly test the LMF model. The predicted relationship
between the exponent γ and α has been very accurately
verified, both at the market and at the single stock level.

Summarizing, the LMF model proposes that most of the
autocorrelation of order flow comes from the execution of
metaorders but, due to the anonymous nature of financial mar-
kets, their presence cannot be easily and directly inferred from
public market data. However, the start of the execution of a
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new metaorder should lead to a regime change in the order
flow time series, which could be detected with suitable sta-
tistical methods. Thus the identification of a CP in the order
flow might signal the arrival of a new metaorder execution.
Moreover, from the market (or econometric) point of view, the
identification of a CP modifies the forecasting of future order
flow and price dynamics, since only past data after the last
CP are useful for predictions. The practical use of such meth-
ods for CP detection requires that they work online, i.e. that
the identification is done in real time and not ex-post (such as
in the segmentation algorithms used, for example, in Vaglica
et al. (2008)). Finally, the method should allow to perform
one-step ahead prediction in an online mode.

3. Methods: Bayesian online change-point detection
algorithms

In the following, we briefly review the BOCPD algorithm,
introduced by Adams and MacKay (2007), and present
two novel extensions that we propose here, namely the
Markovian BOCPD (MBO) and the Markovian BOCPD for
Correlated data (MBOC) algorithm. The original BOCPD
algorithm relies on the assumption that the data are inde-
pendent and identically distributed within each regime. To
relax such a strong assumption, we propose a new MBO
algorithm that considers Markovian dynamics within each
regime, thus allowing for serial correlation. At this stage,
both BOCPD and MBO assume that parameters (i.e. mean,
variance, autocorrelation) are constant within each regime.
We further relax this assumption in a generalization of the
MBO, named MBOC, that accounts for time-varying corre-
lations. Such a generalization is based on the Score Driven
approach introduced by Creal et al. (2013). In a compan-
ion paper Tsaknaki et al. (2024), we introduce in full gen-
erality the new class of regime-shift score-driven models,
where other parameters can change over time within each
regime.

3.1. The BOCPD algorithm

The BOCPD algorithm for i.i.d. data has been introduced
by Adams and MacKay (2007). Let x1:T = {x1, . . . , xT } be
a sample time series. The model assumes that data are
non-stationary (because of regimes) and satisfy the product
partition model (PPM), see Barry and Hartigan (1992), mean-
ing that data can be partitioned into regimes. Moreover, the
parameters θR within each regime R are i.i.d. random variables
drawn from some given distribution. Such a distribution needs
to belong to the exponential family. Throughout the paper,
we consider normal distributions. This assumption is tested
using a Jarque-Bera (JB) statistic in the empirical application
as shown in section 4.1.

Adams and MacKay (2007), assume a time series as the
realization of i.i.d. random variables from a normal distribu-
tion with unknown mean θR and known variance σ 2,

xi ∼ N (θR, σ 2). (4)

Regimes and CPs separating them are not directly observable
but must be inferred from data. To this end, the goal is to infer
the elapsed time since the last CP, a quantity named run length
and defined as follows.

Definition 3.1 The run length rt is a non-negative discrete
variable defined as:

rt =
{

0, if a CP occurs at time t

rt−1 + 1, else.
(5)

In the BOCPD algorithm, the arrival of a CP is modeled as
a Bernoulli process† with hazard rate 1/h:

p(rt|rt−1) =

⎧⎪⎨
⎪⎩

1/h, if rt = 0

1 − 1/h, if rt = rt−1 + 1

0, otherwise.

(6)

The primary quantity of interest is the computation of the
run length posterior p(rt | x1:t) which characterizes probabilis-
tically the number of time steps since the last CP given the
data observed so far,

p(rt | x1:t) = p(rt, x1:t)

p(x1:t)
. (7)

The joint distribution over both the run length and the
observed data can be written recursively,

p(rt, x1:t) =
∑
rt−1

p(rt, rt−1, xt, x1:t−1) (8)

=
∑
rt−1

p(xt | rt−1, x1:t−1)︸ ︷︷ ︸
UPM

p(rt | rt−1)︸ ︷︷ ︸
Hazard

p(rt−1, x1:t−1)︸ ︷︷ ︸
Message

.

(9)

An important assumption that simplifies the computation is
about the changepoint prior, namely rt is conditionally depen-
dent on rt−1 only. The quantity p(x1:t) is named evidence and
is computed as

p(x1:t) =
∑

rt

p(rt, x1:t). (10)

The Underlying Predictive Model (UPM) is defined as the
predictive posterior distribution given the current run length.
Because of the assumption on PPM, such a distribution
depends only on the last rt−1 observations and can be stated
in a more compact form as

p(xt | rt−1, x1:t−1) = p(xt | x(rt−1)

t−1 ) (11)

where

x(rt−1)

t−1 = xt−rt−1:t−1 and xt:t−1 = ∅. (12)

By using the conjugacy property of the exponential fam-
ily when data are i.i.d., one obtains closed-form solutions

† Other assumptions on the distribution of regimes can be imple-
mented, for example, those leading to a non-exponential distribution
of regime length. This more realistic extension is left for future
research.
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for the UPM term, see Diaconis and Ylvisaker (1979) and
Murphy (2007). For normal distributions, the UPM term is

p(xt | x(rt−1)

t−1 ) = N (μrt−1 , σ 2 + σ 2
rt−1

), (13)

with posterior parameters given by

μrt−1 =

∑t−1
i=t−rt−1

xi

σ 2 + μ0

σ 2
0

rt−1

σ 2 + 1
σ 2

0

and σ 2
rt−1

=
(

rt−1

σ 2
+ 1

σ 2
0

)−1

for rt−1 ∈ {1, . . . , t − 1}. (14)

Let us stress that the run length in equation (14) is a latent
variable we must infer. As such, the value of the posterior
parameters varies depending on rt−1, i.e. where we put the
last change point, whose probability is in equation (7).

The BOCPD algorithm works as follows. At time t = 0,
we initialize the prior values μ0, σ 2

0 and the known variance
σ 2 (see below for details). At a generic time t > 0, a new data
point xt becomes available, and the UPM in equation (13) is
computed for any possible μrt−1 and σ 2

rt−1
, as a function of the

run length rt−1 that takes value from 0 to t − 1. Then, the joint
distribution over both the run length and the observed data
point, see equation (8), is computed for all the possible values
of the run length. Thus we obtain:

(1) the growth probabilities,

p(rt = l, x1:t), for l = 1, . . . , t; (15)

(2) the CP probability

p(rt = 0, x1:t). (16)

After computing the evidence in equation (10), the run
length posterior is obtained by equation (7). Finally, μrt and
σ 2

rt
are updated as in equation (14) in order to be used at the

next time t + 1.

3.2. The MBO algorithm

The assumption about the independence of data is clearly
restrictive. Here we introduce the MBO algorithm as an exten-
sion of the BOCPD algorithm to the case of Markovian
dependence. Similarly to before, we consider normally dis-
tributed data. As such, within a regime R, a time series is a
realization of an AR(1) process with normal innovations,

xt ∼ N (θR, σ 2), (17)

xt | xt−1 ∼ N (θR + ρ(xt−1 − θR), σ 2(1 − ρ2)). (18)

As in the previous model, in each regime, the uncondi-
tional distribution is normal with unknown mean θR and
known variance σ 2. Moreover the conditional distribution is
normal with constant correlation ρ = Cov(xt ,xt−1)

σ 2 . In the next
Section, we introduce a further generalization, allowing ρ to
be time-varying within each regime†.

† We have also explored a further generalization where the variance
inside each regime is time-varying, similarly to a GARCH model.
The results for the order flow are qualitatively similar and we do not
present them here. The reader interested in this model can consult
the companion paper Tsaknaki et al. (2024).

The key observation is that the conjugacy property still
holds when the data are Markovian since the conditional dis-
tribution of any member in the exponential family is still in
the family, see Wainwright and Jordan (2008). After some
computations, one can obtain a closed form for the UPM term
as

p(xt+1 | x(rt)
t ) = N (μrt + ρ(xt − μrt),

σ 2(1 − ρ2) + σ 2
rt
(1 − ρ)2

)
, (19)

where the posterior parameters are

μrt =
brt + μ0

σ 2
0

art + 1
σ 2

0

and σ 2
rt

=
(

art + 1

σ 2
0

)−1

for rt ∈ {1, . . . , t} (20)

and

art = 1

σ 2
+ (rt − 1)(1 − ρ)2

σ 2(1 − ρ2)
(21)

brt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xt

σ 2
, for rt = 1

xt−1

σ 2
+ (1 − ρ)(xt − ρxt−1)

σ 2(1 − ρ2)
, for rt = 2

xt+1−rt

σ 2
+ (1 − ρ)2 ∑t−1

i=t+2−rt
xi+(1 − ρ)(xt −ρxt+1−rt )

σ 2(1 − ρ2)
, for rt ∈ {3, . . . , t}

.

(22)

Let us notice that we recover the previous case when ρ = 0.

3.3. The MBOC algorithm

Both the baseline model and its Markovian generalization
assume that the parameters within each regime are constant.
This might be unrealistic in many empirical cases. For exam-
ple, heteroscedasticity, i.e. time-varying variance, is ubiqui-
tous in financial time series. Since our interest here mostly
focuses on the correlation of the order flow and its temporal
dependencies, we consider a model where temporal correla-
tion (i.e. ρ) is time-varying within the regime. This might
capture the variability and temporal persistence of trading vol-
ume, which in turn depends on the available liquidity of the
market.

Time-varying parameters models display typically some
difficulties for estimation. Following Cox (1981), we consider
the class of observation-driven models where the param-
eters are unconditionally random variables, but evolve in
time based on some nonlinear deterministic function of past
observations.

In particular, we consider the class of Score-Driven mod-
els introduced by Creal et al. (2013) and Harvey (2013),
which assume that the dynamics of the time-varying param-
eter(s) is autoregressive with an innovation term depending
on the so-called score‡. The score is then re-scaled by the

‡ We remind that the score is the derivative of the log-likelihood with
respect to the parameter(s).
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Algorithm 1 MBOC

Input: μ0, σ 2
0 , 	λ, ρ1, σ 2

i , p(r0 = 0) = 1, η

Output: p(rt|x1:t), μ̂t

1: for t = 1, . . . do
2: Observe xt ∼ N (θR, σ 2)

3: Compute μ̂t

4: Find argmaxi∈{0,1,...,t}p(rt = i | x1:t)

5: if t > 1 & i > η then
6: Infer 	λ with GAS using x(i)

t − μi

7: Filter ρt

8: end if
9: Compute p(rt | x1:t) 
 The correlation of the previous step ρt−1 is used here

10: Update μt, σ 2
t

11: end for

inverse of the Fisher matrix† , which is used to modulate the
importance of the innovation according to the concavity of
the log-likelihood. The intuition is simple: the scaled score
adjusts the value of the parameter(s) in order to maximize
the likelihood of the observed data. It is worth noticing that
many standard models in financial econometrics, such as the
GARCH, ACD, MEM, etc., are special cases of score-driven
models (see www.gasmodel.com for more details).

We extend the MBO model by promoting the correlation
coefficient ρ to a time-varying parameter ρt described by the
Score-Driven version of the AR(1) process (see Blasques et
al. (2014)). We name such an extension as MBOC. We then
introduce an online method to estimate both the time-varying
parameter ρt and the regime characteristics, namely the mean
θR characterizing the regime and the run length rt.

More specifically, within a regime R, the data generating
process is assumed to be

xt = ρt(xt−1 − θR) + θR + ut, ut ∼ N (0, σ 2), (23)

where θR and σ 2 are unknown. According to the Score-Driven
AR(1) process, the time-varying correlation ρt is described by
the recursive relation‡

ρt = ω + αst−1 + βρt−1 (24)

where st is the scaled score defined as

st = I−d
t | t−1 · ∇t, d ∈ [0, 1] (25)

∇t = ∂ log pu(ut)

∂ρt
(26)

It | t−1 = Et | t−1[∇T
t ∇t] (27)

and ut is the prediction error associated with the observation
xt. The parameter d controls the role of the Fisher matrix
in modulating the role of the score in the update of the

† The Fisher matrix is defined as It | t−1 = Et | t−1[∇T
t ∇t] where ∇t

is defined in equation (26).
‡ This specification does not guarantee that |ρt| ≤ 1, thus sometimes
one uses a link function (e.g. an inverse logistic) which maps [−1, 1]
in R, see Blasques et al. (2014). In our empirical analysis, we observe
that the filtered |ρt| is larger than 1 in less than one per thousand
observations, thus we simply set a threshold |ρt| ≤ 1.

parameters. Standard choices for d are d = 0, 1/2, 1. Each
of them lead to different dynamic scale models. The vector
of parameters 	λ = [ω, α, β, σ 2]′ is estimated through a Max-
imum Likelihood Estimation method. In the analysis below,
we set d = 0, i.e. we consider a not re-scaled score. It is

st = ∇t = ut

σ 2
(xt−1 − θR). (28)

Then the UPM term becomes

p(xt+1 | x(rt)
t ) = N (μrt + ρt(xt − μrt), σ

2 + σ 2
rt

)
, (29)

where the posterior parameters are

μrt =
brt + μ0

σ 2
0

art + 1
σ 2

0

and σ 2
rt

=
(

art + 1

σ 2
0

)−1

for rt ∈ {1, . . . , t}, (30)

and

art = 1

σ 2
+ (rt − 1)(1 − ρt)

2

σ 2(1 − ρ2
t )

(31)

brt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xt

σ 2
, for rt = 1

xt−1

σ 2
+ (1 − ρt)(xt − ρtxt−1)

σ 2(1 − ρ2
t )

, for rt = 2

xt+1−rt

σ 2
+ (1 − ρt)

2 ∑t−1
i=t+2−rt

xi + (1 − ρt)(xt −ρtxt+1−rt )

σ 2(1 − ρ2
t )

, for rt ∈{3, . . . , t}

.

(32)

The vector of parameters 	λ is estimated at each time-step
within the time window associated with the most likely
regime after we demean the data with the posterior mean see
equation (30). In particular at each time step t > 1 we find

i = argmaxi∈{1,...,t}p(rt = i | x1:t)

and we consider the demeaned data set x(i)
t − μi = {xt+1−i −

μi, . . . , xt − μi} in which we infer 	λ and we filter ρt with
the use of the Score-Driven model. In order to robustify the
algorithm and accomplish better Mean Squared Error (MSE)
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Table 1. Comparison of out of sample one-step-ahead MSE of ARMA(1,1), BOCPD, MBO and MBOC.

TSLA MSFT

ρ 0.1 0.2 0.3 0.2 0.3 0.4

ARMA 0.908 0.908 0.908 0.860 0.860 0.860
BOCPD 0.907 0.907 0.907 0.878 0.878 0.878
MBO 0.895 0.896 0.911 0.835 0.834 0.844
MBOC 0.890 0.890 0.890 0.831 0.831 0.831

Notes: The correlation ρ is the one used in MBO. Data refer to TSLA and MSFT at the 3 minute resolution.

(see section 4.1 for more details) we define a threshold value
η, then we filter the time-varying correlation and we infer
the variance (see algorithm 1 for more details on the infer-
ence procedure of the MBOC model) whenever i > η. In
that way, the demeaned data set contains at least η data
points. The threshold value is a hyperparameter that is tuned
in a preliminary phase, see below for the implementation
details.

4. Results

4.1. Model estimation and empirical analysis

We estimate the three models, BOCPD, MBO, and MBOC,
on the time series of aggregated order flow xt of TSLA and
MSFT, both for the 1 and the 3 min aggregation time scale.
The application of the models requires a careful choice of sev-
eral hyperparameters. For both TSLA and MSFT, the prior
value of the mean for all models is set to μ0 = 0 shares due to
the symmetry between buy and sell orders. The tuning of the
other hyperparameters is obtained by minimizing the MSE in
the first day of each month and each stock. For TSLA, for all
the models, the prior value of the variance of the mean is set
to σ 2

0 = 107 shares2, while for MSFT σ 2
0 = 15 · 107 shares2.

The hazard rate is set to h = 1
80 . For both BOCPD and MBO

the known variance is set to σ 2 = 108 shares2 for TSLA while
for MSFT σ 2 = 15 · 108 shares2. The same values for TSLA
and MSFT are being used for the initial variance σ 2

i of the
MBOC model (see algorithm 1). Moreover, the initial cor-
relation ρ1 is set to 0.2 for TSLA and 0.3 for MSFT while
the initial parameters of the Score-Driven dynamics are set to
	λ = [0.08, 0.02, 0.05, 108]′ and the η value is set equal to 20
shares for the 1 minute and 10 shares for the 3 minute data set.
The hyperparameter η is being tuned in such a way in order
to obtain the best MSE. Finally, for the constant correlation
coefficient ρ of MBO we have tested different specifications.
In the table below we will report the results for three of them,
showing that the predictive capacity of the model slightly
depend on it.

4.1.1. Model comparison. We present here the results of an
online prediction study for order flow data by using BOCPD,
MBO, and MBOC models introduced in section 3, and we
compare their performances by computing the Mean Squared
Error for the predictive mean of each model. The three models
are then compared with the ARMA(1,1) model, estimated on
the whole time period by assuming the absence of regimes.

As such, the ARMA(1,1) model represents a natural bench-
mark to test whether including regime-switching dynamics
does improve the forecasting of order flow.

The predictive mean μ̂t at time t as one step ahead forecast
is defined by using observations up to time t and to predict
out-of-sample the realization at time t + 1. That is

μ̂t =
∑

rt

p(xt+1 | x1:t, rt, )p(rt | x1:t)

=
∑

rt

μrt p(rt | x1:t) (33)

where μrt is defined in equations (14), (20), and (30) for
BOCPD, MBO and MBOC model respectively. Then, the
MSE can be computed as

MSE = 1

T

T∑
t=1

(μ̂t−1 − xt)
2. (34)

Table 1 shows the MSE of the three aforementioned mod-
els along with the ARMA(1,1) for both TSLA and MSFT
stocks. As mentioned above, we consider three different val-
ues of the correlation coefficient ρ in the MBO model. We
observe that the MBOC model outperforms all competitors.
In particular, the proposed models (MBO and MBOC) out-
perform systematically the ARMA(1,1) benchmark, while the
baseline BOCPD model displays comparable performances.
Finally, notice that the role of the hyperparameter ρ for the
MBO model is relatively marginal.

In conclusion, the online prediction study with order flow
data suggests that regime-switching models accounting for
a Markovian correlation structure outperform both the base-
line BOCPD model and the benchmark. The MBOC model
displays the best forecasting performance and high flexibil-
ity in data description. In the following Sections, we exploit
such flexibility in modeling regime-switching dynamics in the
presence of time-varying correlations to empirically show a
clear connection between regimes for aggregated order flows
and the market impact of associated trades (likely including
metaorders).

4.1.2. Empirical analysis of identified regimes. Here we
investigate the statistical properties of the identified regimes
for the aggregated order flows. We consider the MBOC model
because of the best performances. Let us first introduce the
adopted definition of an identified regime.
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Figure 2. Top: Order flow of Tesla at the 3 minutes aggregation time scale during December 2021. The black solid line is the predictive
mean and the dashed line, the predictive standard deviation. The red dashed lines indicate the CPs the MBOC finds and as a result the
regimes. The tick labels on the x-axis indicate the end of each trading day. Bottom: Run length posterior of the MBOC model. The darkest
the color, the highest the probability of the run length. The red line highlights the most likely path, i.e. value of rt with the largest run length
posterior p(rt | x1:t) for each t.

Definition 4.1 Let x1:T be a time series and t, s ∈ N ∩ [1, T]
times with t < s such that

argmaxi∈{0,1,...,t}p(rt = i|x1:t)

= argmaxi∈{0,1,...,s}p(rs = i|x1:s) = 0 (35)

and for any u ∈ N ∩ (t, s), argmaxi∈{0,1,...,u}p(ru = i | x1:u) �=
0. Then the subset xt:s−1 of the time series x1:T is defined as
a regime.

The top panel of figures 2 and 3 shows xt for TSLA (MSFT)
aggregated every 730 (1200) executions corresponding to an
average time interval of 3 minutes. The vertical red dashed
lines indicate the CPs identified by MBOC, according to the
definition above. Interestingly, many CPs are observed at
the end of a trading day for both stocks. On one side this
is expected since overnight is a natural separation between
regimes, but on the other side, this is an indication that the
proposed method is able to identify regime changes.

The bottom panels of figures 2 and 3 show the run length
posterior of the MBOC model for the two assets. For each
time (on the abscissa) the vertical axis displays in grayscale
the probability that the run length has a given value (on the
ordinate). Darker gray regions correspond to higher probabil-
ities. The red line highlights the most likely path, i.e. the value
of rt with the largest run length posterior p(rt | x1:t) for each t.
Finally, we also show the (one step ahead) predictive standard
deviation defined as

σ̂t =
√∑

rt

σ 2
rt

p(rt | x1:t), (36)

where σ 2
rt

is as in equations (14), (20), and (30) for BOCPD,
MBO, and MBOC models, respectively.

Regime length distribution: For the 1 (3) minute(s) data set,
we find 911 (546) regimes for TSLA and 1394 (690) regimes
for MSFT. Figure 4 shows the histograms of the length of
the detected regimes. Consistently with the constant hazard
function, we find that the regime length is approximately
exponentially distributed with a mean regime length of 10 for
the 1 minute data set and 5 for the 3 minutes data set intervals
for TSLA and 7 for the 1 minute data set and 4 intervals for
the 3 minutes data set of MSFT corresponding to 10 and 15
trading minutes for TSLA and to 7 and 12 trading minutes for
MSFT respectively. The length of the regimes ranges in the
interval [1, 92] for 1 minute and in [1, 30] for 3 minutes for
TSLA while for MSFT in [1, 65] for 1 minute and in [1, 30]
for 3 minutes for MSFT.

Gaussianity inside regimes: The main assumption of both
BOCPD and MBO is that the variable xt is Gaussian within
each regime, with constant parameters. For MBOC, we expect
that xt is only conditionally Gaussian, because of the time-
varying autocorrelation, but not unconditionally over the
whole period and only approximately within a regime. The
Jarque-Bera (JB) test rejects the Gaussianity hypothesis of
unconditional aggregated order flow {xt}t=1,...,T at a 1% signif-
icance level, for both stocks and time scales. We then perform
the JB test within each regime detected by the MBOC model.
For the 3 minute time scale, we cannot reject the null hypoth-
esis at 5% confidence level for 94% (95%) of the regimes for
TSLA (MSFT). When we consider the 1 minute time scale,
the frequency of rejection is 86% (87%). These findings sup-
port the choice of MBOC to identify regimes with order flows
as approximately Gaussian within each regime.



Online learning of order flow and market impact 9

Figure 3. Top: Order flow of Microsoft at the 3 minutes aggregation time scale during March 2020. The black solid line is the predictive
mean and the dashed line, the predictive standard deviation. The vertical red dashed lines indicate the CPs the MBOC finds and as a result the
regimes. The tick labels on the x-axis indicate the end of each trading day. Bottom: Run length posterior of the MBOC model. The darkest
the color, the highest the probability of the run length. The red line highlights the most likely path, i.e. value of rt with the largest run length
posterior p(rt | x1:t) for each t.

Figure 4. Histograms of regimes length for Tesla (a) with t = 1 min, (b) with t = 3 min and for Microsoft (c) with t = 1 min, (d) with
t = 3 min.

Autocorrelation of residuals inside regimes: As a final
model checking we test for the lack of serial correlation in
the residuals of our model within each regime. We have seen
above that, coherently with the literature, vt is strongly auto-
correlated. Following Lillo et al. (2005), our assumption is
that this correlation is driven by the presence of regimes,
which in turn are likely associated with metaorders. We thus
apply the Ljung-Box test to the residuals in each regime. For
the 3 minute time scale, we cannot reject the null hypothesis
of uncorrelated residuals for 98% (99%) of the regimes of
TSLA (MSFT), with 5% confidence level. For the 1 minute
time scale, the frequency of rejection is 97% (93%). It is
possible to conclude that the MBOC model captures most of

the serial correlation of aggregated order flow. Notice that,
according to the model, the unconditional slow decay of the
autocorrelation of order flow observed in the literature (see
also figure 1) is due largely to regime-switching dynamics
and, only partially, to Markovian temporal dependencies.

4.2. Price impact during order flow regimes

In this Section, we empirically study the average price dynam-
ics inside a detected order flow regime and we measure the
relation between the total price change and the net volume
exchanged in the same regime.
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Figure 5. Market Impact I�(k) defined in equation (38) for Tesla (a) with t = 1 min, (b) with t = 3 min and for Microsoft (c) with
t = 1 min, (d) with t = 3 min. The plotted quantities are in basis points. Error bars are standard errors. The black dashed line indicates
the y = 0 axis.

4.2.1. Price as a function of time inside an order flow
regime. As said, we first study the average price dynamics
during an order flow regime. This type of analysis mirrors
the one performed, for example, by Bacry et al. (2015) and
Zarinelli et al. (2015) which studied the average price dynam-
ics during the execution of a metaorder. Using labeled data
allowing to identify when an institutional investor executed a
metaorder, these papers find that (i) the average price dynam-
ics is correlated with the conditioning metaorder sign, i.e. the
price increases (decreases) when a buy (sell) metaorder is
executed; (ii) the price dynamics is concave in time, i.e. the
price increases faster at the beginning of a buy metaorder and
slowly toward the end.

Here we take a step forward by asking what is the aver-
age price dynamics during a regime of aggregated order flow
detected with the MBOC model. To this end, for each detected
regime R (see definition 4.1), characterized by an initial time
tR and a final time sR > tR, we denote with

εR = sign

( ∑
tR≤t<sR

xt

)

the sign of the order flow in the regime, being equal to +1
(−1) when the regime is dominated by the volume of buyer
(seller) initiated trades. Since during a metaorder execution
we expect a significant net imbalance of buy or sell volume,
we will consider subsets of regimes for which

ZR :=
∣∣∣∣∣
∑

tR≤t<sR
xt∑

tR≤t<sR
|xt|

∣∣∣∣∣ > �, 0 ≤ � < 1 (37)

i.e. when the difference between buy and sell volume divided
by their sum is larger than �. Notice that when � = 0 the
subset coincides with the entire set of regimes identified by
the MBOC. Appendix A.1 reports the number of regimes in
the different subsets.

Indicating with pt the log-price of the last transaction in the
interval labeled by time t, we compute the log-price change

between the beginning of the regime and tR + k, where 0 ≤
k < sR − tR and we take the average

I�(k) = ER
[
εR(ptR+k − ptR−1) | tR + k < sR, ZR > �

]
.
(38)

With ER[·], we denote the sample average over the regimes,
i.e. that tR is the first interval of a regime, and the conditioning
restricts it to those regimes for which the observation at tR +
k is in the same regime as the one at tR as well as to those
regimes that satisfy condition in equation (37).

Figure 5 shows the impact function I�(k) as a function of
k for the two stocks and the two time scales when � = 0, 0.5,
and 0.9. Error bars are standard errors in each bin. We notice
that in all cases impact is positive and increasing. This is
somewhat expected since we are implicitly conditioning on
the sign of order flow in the whole regime, thus the observed
behavior is coherent with the known correlation between
aggregated order flow and contemporaneous price change,
see Bouchaud et al. (2009), Patzelt and Bouchaud (2018).
Interestingly the price dynamics is a concave function of
time, similarly to what is observed when conditioning on
metaorders execution instead of on order flow regimes. More-
over the degree of concavity increases with �. Clearly the
concavity is not expected by the mere fact that the regime is
characterized by a net order flow sign, while it could instead
be explained by the Transient Impact Model of Bouchaud et
al. (2004) or by the LLOB model of Donier et al. (2015),
which predicts a concave average price temporal profile when
the order flow has a non-zero average as during a metaorder
execution.

4.2.2. Price impact as a function of volume. Finally, we
study the relation between the total price change in a
regime and the total net volume in the same time span. A
large body of empirical literature Torre (1997), Almgren et
al. (2005), Moro et al. (2009), Tóth et al. (2011), Bershova
and Rakhlin (2013), Zarinelli et al. (2015) and Tóth et
al. (2016) have shown that on average the total price impact
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Table 2. Estimated parameters and their standard errors (SE) of the regression of equation (39).

TSLA

t = 1 min t = 3 min

� A SE of A γ SE of γ A SE of A γ SE of γ

0 0.121 0.05 0.592 0.041 0.298 0.139 0.52 0.045
0.5 0.159 0.066 0.567 0.041 0.284 0.133 0.528 0.045
0.9 0.172 0.084 0.552 0.049 0.387 0.179 0.504 0.044

MSFT

t = 1 min t = 3 min

� A SE of A γ SE of γ A SE of A γ SE of γ

0 0.498 0.209 0.4 0.038 0.365 0.203 0.458 0.048
0.5 0.469 0.209 0.408 0.04 0.314 0.185 0.47 0.05
0.9 0.334 0.144 0.444 0.038 0.332 0.199 0.47 0.051

Note: Results refer to data with outliers removed.

during a metaorder execution scales with a sublinear power
law of metaorder volume, a relation well fit by a power law
with an exponent ranging in [0.4, 0.7]. This is the celebrated
square root impact law. It is therefore natural to investi-
gate empirically the relation between the same two quantities
within a regime identified with our method.

To this end, defining pR = psR − ptR we consider the non-
linear regression:

εRpR = A

(
εR

∑
tR≤t<sR

xt

)γ

+ noise. (39)

Since the measurement of market impact is notoriously very
noisy, we have performed the estimation both on the original
dataset and on a dataset where potential outliers are removed.
In the latter approach, we used the standard procedure of con-
sidering outliers datapoints corresponding to regimes whose
price change is smaller (larger) than the first (third) quartile
minus (plus) 1.5 times the interquartile range (see appendix
A.2 for details).

Table 2 reports the estimated parameters when outliers are
removed, while appendix A.2 reports the results for the entire
dataset and presents the scatter plots of the data and the fitted
curve. Both Tables indicate that the exponent γ is smaller than
one and for the data without outliers it is remarkably close to
0.5, as postulated by the square root law.

Clearly these results are preliminary and should be vali-
dated on larger panels of stocks, also pooling them together
with the usual rescaling by daily volatility and volume. How-
ever we find these results very encouraging and suggestive of
a relation between the identified regimes and the execution of
metaorders.

4.3. Online prediction of order flow and market impact

The possibility of performing an online detection of regimes
and regime changes in the order flow opens the question of
how to use this information to predict subsequent order flow
and price changes. In the PPM, regimes are independent,
hence in forecasting future values only data from the current

regime are useful, while older data add noise to the prediction.
This idea will be used to build online predictions of order flow.
Additionally, through market impact, price dynamics is corre-
lated with order flow. Thus a proper modeling of order flow is
useful to forecast future price.

Since we have seen in the last Section that order flow sign
of a regime correlates with contemporaneous price change,
we can ask the question of whether the knowledge that a
new regime in order flow has just started allows to pre-
dict the future order flow and, more importantly, the future
price dynamics. Consistently with the results of section 4.1
showing that the MBOC model outperforms the competi-
tors (BOCPD, MBO, ARMA) in one step ahead prediction
of order flow, here we focus our analyses on the regimes
identified by MBOC. It is important however to stress that
qualitatively similar results are obtained with the other two
simpler models, BOCPD and MBO. In other words the rela-
tion between price dynamics and aggregated order flow is
importantly understood by using regimes, while the choice of
the specific regime shift model improves the short-term pre-
diction of aggregated order flow. However, as shown in in the
appendix 2, the MBOC method achieves higher predictability
wrt the other CP detection methods.

To better understand the role of regimes in prediction, let
consider the following argument. If the data generating pro-
cess of order flow is truly consistent with a product partition
model (i.e. independent regimes), the knowledge of the data
of the previous regimes is not useful for prediction. Thus
in this case, it is better to use only the data in the cur-
rent regime and its learned statistical properties. However,
even if we are relatively sure that a new regime has just
started, its parameters could be quite uncertain at the begin-
ning. Thus, in order to form a forecast, it is better to wait
for few observations into a new regime. Moreover, if many
regimes are very short (e.g. composed by one or two inter-
vals), as observed empirically in figure 4, it might be better to
build predictions after the observation of a few intervals in a
regime.

Online order flow prediction: Following the above argu-
ment, we adopt the following procedure. Whenever we detect
a CP in an online fashion for the time series of order flow, we
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Figure 6. Online order flow prediction for Tesla (a) with t = 1 min, (b) with t = 3 min and for Microsoft (c) with t = 1 min, (d) with
t = 3 min. The plotted quantities are defined in equations (42) and (43) and error bars are standard errors.

measure the correlation

I(1)
ε (k) = ER[sign(xtR) · sign(xtR+k)] k = 1, 2, . . . (40)

where ER indicates that we are conditioning on the fact that
tR is the first observation of a new regime. Notice that (i) the
correlation is extended to values of k possibly beyond the end
of the detected regime (at time sR); (ii) we do not consider the
case k = 0 since in this case the correlation is trivially equal
to 1. The superscript (1) in the above expression means that we
take the sign of the aggregated order flow in the first interval
(see below for an extension).

The continuous yellow line in figure 6 shows that I(1)
ε (k)

is a poor predictor of order flow. To better quantify this state-
ment, the dashed yellow line in the figure is the unconditional
correlation

Ĩ(1)
ε (k) = E[sign(xt) · sign(xt+k)] k = 1, 2, . . . (41)

which makes no use of regime detection (and for this reason
the expectation does not have the subscript R; the tilde refers
to the expectation without considering regimes). Clearly, the
unconditional correlation is larger than the conditional one.

As said above, one of the reasons of the comparable per-
formance of I(1)

ε with respect to Ĩ(1)
ε is the fact that there are

many regimes of length one and also that the sign of the new
regime, εR, might be poorly measured by the sign of the first
interval sign(xtR). A better option is to wait few more intervals
within the regime before building the predictor. Thus, defin-
ing m = 1, 2, . . . the number of intervals in a regime we wait
before forming the prediction, we introduce the correlation

I(m)
ε (k) = ER

[
sign

(
tR+m−1∑

t=tR

xt

)
· sign(xtR+m−1+k)

]

k = 1, 2, . . . (42)

which is the correlation between the sign of the order flow in
the first m intervals of a regime and the sign of the order flow
in an interval k steps after these m intervals. Notice that we are
not conditioning on the fact that tR + m − 1 + k is in the same

regime as tR, so the two observation could belong to different
regimes. However, we condition on the fact that tR + m − 1
is in the same regime as tR. Similarly we use as a benchmark
case the predictor

Ĩ(m)
ε (k) = E

[
sign

(
t+m−1∑

s=t

xs

)
· sign(xt+m−1+k)

]

k = 1, 2, . . . . (43)

The orange, red, and dark red continuous lines in figure 6
show I(m)

ε (k) for m = 2, 3, 4 respectively, while the cor-
responding dashed lines refer to Ĩ(m)

ε (k). We observe that
the correlations based on regimes are larger than the corre-
sponding ones without regimes, especially for large m. This
empirical evidence indicates that the knowledge of the order
flow regimes improves the short-term predictability of order
flow.

Online market impact prediction: We now consider the pre-
diction of price change based on the knowledge of being in
a regime of order flow. To this end we introduce the online
impact

I(m)
p (k) = ER

[
sign

(
tR+m−1∑

t=tR

xt

)
· (ptR+m−1+k − ptR+m−1)

]

k = 1, 2, . . . (44)

which is the correlation between the sign of the total order
flow in the m initial intervals of a regime and the subsequent
price change over k intervals. Compared to equation (38), two
important differences are worth to be highlighted. First, the
sign inside the expectation is taken only on the aggregated
order flow of the m intervals used to build the prediction,
while in equation (38) εR considers the sign of the whole
regime and therefore is non-causal. Second, in I(m)

p (k) we do
not condition on sR − tR > k as in equation (38) since after
having observed m intervals in a regime we do not know when
the regime is going to end. In other words, for a given k, we
take the average both on cases when tR and tR + k belong to
the same regime and when they do not. Finally, as before we
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Figure 7. Online market impact prediction for Tesla (a) with t = 1 min, (b) with t = 3 min and for Microsoft (c) with t = 1 min, (d)
with t = 3 min. The plotted quantities (in basis points) are defined in equations (44) and (45) and error bars are standard errors.

use as a benchmark an impact predictor that is based on the
sign of the order flow,

Ĩ(m)
p (k) = E

[
sign

(
t+m−1∑

s=t

xs

)
· (pt+m−1+k − pt+m−1)

]

k = 1, 2, . . . . (45)

When m = 1 the quantity Ĩ(m)
p (k) becomes the response

function widely investigated in the market impact litera-
ture, mainly in transaction time, see Bouchaud et al. (2004)
and Bouchaud et al. (2009). We choose this more general
definition in order to make a fairer comparison between
impact predictors using the same number of past order flow
observations.

Figure 7 shows these different quantities for online mar-
ket impact prediction, considering both stocks and both time
intervals. It is evident that as soon as m > 1, I(m)

p (k) (orange to
dark red lines) is much larger than the corresponding response
function Ĩ(m)

p (k) (dashed orange to dark red lines) which
does not make use of regimes. Moreover, the larger m, the
larger the correlation between the order flow sign and the
future price change, in all four investigated cases. Thus the
(online) knowledge that a regime has started provides a sig-
nificant additional forecasting power to future price change
with respect to the response function, which is an uncondi-
tional cross-correlation between current order flow and future
price change.

5. Conclusion

In this work, we proposed the use of Bayesian Online Change
Point Detection Methods to identify (in a real-time setting)
regimes in time series of aggregated order flow of financial
assets. Since the existing methods make very strong assump-
tions on the data generating process, in particular for what
concerns the serial correlation of data within each regime,
we proposed here two extensions of the regime detection
algorithm: the first one assumes a Markovian dynamics inside

each regime, while the second one makes use of an observa-
tion driven dynamics based on the score-driven mechanism.
As shown by the recent econometric literature, the score
driven approach is extremely flexible also as a filter of a mis-
specified dynamics (tantamount to GARCH). The companion
paper (Tsaknaki et al. 2024) provides more methodological
details of this new class of models by discussing different
specifications where other parameters (e.g. the variance) are
time-varying within each regime. The analysis of two liquid
stocks traded in the NASDAQ market shows that the new
algorithms presented here, particularly the latter, outperform
the baseline model in out-of-sample forecasting. In gen-
eral, we find that the regime-switching methods outperform
standard econometric time series models like ARMA(1,1).
Moreover, a careful model checking shows that the algorithm
outputs well specified regimes both in terms of Gaussianity of
data and of lack of serial correlation of residuals, within each
regime.

From the financial point of view, the identification of
weakly autocorrelated regimes in the order flow time series
suggests that the observed unconditional long memory might
be explained by regime switching. This is in line with the
mechanism proposed by Lillo et al. (2005) who connected
the long memory to order splitting by heterogeneous institu-
tional investors. It is natural at this point to try to identify the
detected regimes with time periods when one or a few institu-
tional investors are trading a large order. Of course, we do not
have any empirical evidence in support of this idea which, at
this point, can be considered as a conjecture to be tested with
suitable data (for example those used by Zarinelli et al. (2015)
or Sato and Kanazawa (2023)).

The paper shows how the online identification of regimes
can be used to significantly improve the forecasting of order
flow and of price dynamics. Using the knowledge of the
order flow during the current regime provides better predic-
tions when compared with methods using unconditionally the
past history of order flow. We foresee that such improve-
ment could be fruitfully used in several financial applications,
such as optimal trading, market making, and alpha signal
detection. Similarly, if our interpretation above is correct, the
online regime detection method could be used to statistically
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identify the execution of a large institutional execution from
anonymous market data.
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Appendices

Appendix 1. Price dynamics inside an order flow regime

A.1. Concavity of order flow regimes

In table A1 we report the number of regimes that satisfy the
condition:

ZR :=
∣∣∣∣∣
∑

tR≤t<sR
xt∑

tR≤t<sR
|xt|

∣∣∣∣∣ > � (A1)

for various values of �.

A.2. Testing the square root impact law

Table A2 presents the estimation of the parameters of the regres-
sion in equation (39) when we consider the entire data sets without

Table A1. Number of regimes satisfying the condition in
equation (A1) for � = 0, 0.5 and 0.9, for both TSLA and

MSFT with t = 1 min and t = 3 min.

TSLA MSFT

� 1 min 3 min 1 min 3 min

0 911 546 1394 690
0.5 674 466 1195 651
0.9 344 321 827 550

Figure A1. Data points and best fitting curves according to the regression of equation (39) with � = 0 for Tesla (a) with t = 1 min, (b)
with t = 3 min and for Microsoft (c) with t = 1 min, (d) with t = 3 min. The plotted quantities are in basis points. The red points are
the outliers. The green line is the fitting curve of the entire data set, while the orange line is the fitting curve when the outliers are excluded.
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Table A2. Estimated parameters and their standard errors (SE) of the regression of equation (39).

TSLA

1 min 3 min

� A SE of A γ SE of γ A SE of A γ SE of γ

0 0.032 0.013 0.732 0.04 0.08 0.04 0.654 0.047
0.5 0.045 0.018 0.7 0.039 0.096 0.047 0.639 0.046
0.9 0.05 0.023 0.691 0.044 0.221 0.101 0.564 0.043

MSFT

1 min 3 min

� A SE of A γ SE of γ A SE of A γ SE of γ

0 0.015 0.006 0.737 0.037 0.005 0.003 0.835 0.053
0.5 0.015 0.006 0.736 0.038 0.004 0.003 0.845 0.055
0.9 0.022 0.01 0.706 0.042 0.006 0.004 0.827 0.061

Note: The whole dataset is considered.

Figure A2. Online order flow prediction according to MBOC (solid
lines) and BOCPD (dotted lines) models with t = 3 min (a) for
Tesla and (b) for Microsoft.

removing any outliers. We observe that the exponent γ is a bit larger
than 1/2 being typically close to 0.7.

The outlier removal is obtained by the standard interquartile
approach. Namely, we compute the first and third quartile Q1
and Q3, respectively, of log-returns. Then the data points outside
the range [Q1 − 1.5IQR, Q3 + 1.5IQR], where IQR = Q3 − Q1,are
considered as outliers.

Figure A1 illustrates the data and the fits for the two stocks and
the two timescales. The red points are those which are identified as
outliers.

Figure A3. Online market impact prediction according to MBOC
(solid lines) and BOCPD (dotted lines) models with t = 3 min (a)
for Tesla and (b) for Microsoft.

Appendix 2. Comparison of order flow and market
impact predictions under different regime shift models

Figure A2 compares the correlation function I(m)
ε (k) of order flow

for the MBOC and the BOCPD model. Figure A3 compares the
predictor of market impact I(m)

p (k) for the same models.
From both figures, it is evident that the MBOC model outper-

forms the BOCPD when m > 1. This justifies why in the main text
we present the results obtained with the MBOC model.
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