Antarctica has been affected directly and indirectly by human pressure for more than two centuries and recently plastic pollution has been recognized as a further potential threat for its unique biodiversity. Global long-range transport as well as local input from anthropogenic activities are potential sources of plastic pollution in both terrestrial and marine Antarctic territories. The present study evaluated the presence of microplastics in speci-mens of the Antarctic whelk Neobuccinum eatoni, a key species in benthic communities of the Ross Sea, one of the largest marine protected areas worldwide. To this aim, a thermo-oxidative extraction method was applied for microplastic isolation and quantification, and polymer identification was performed by manual mu-FTIR spec-troscopy. Textile (semi-)synthetic or composite microfibers (length range: 0.8-5.7 mm) were found in 27.3% of whelk specimens, suggesting a low risk of bioaccumulation along Antarctic benthic food webs in the Ross Sea. Their polymer composition (of polyethylene terephthalate and cellulose-polyamide composites) matched those of outdoor technical clothing in use by the personnel of the Italian "Mario Zucchelli" station near Terra Nova Bay in the Ross Sea. Such findings indicate that sewage from base stations may act as potential local sources of textile microplastic fibers in this remote environment. More in-depth monitoring studies aiming at defining the extent of microplastic contamination related to such sources in Antarctica are encouraged.
Bergami, E., Ferrari, E., Löder, M.G.J., Birarda, G., Laforsch, C., Vaccari, L., et al. (2023). Textile microfibers in wild Antarctic whelk Neobuccinum eatoni (Smith, 1875) from Terra Nova Bay (Ross Sea, Antarctica). ENVIRONMENTAL RESEARCH, 216(Pt 2) [10.1016/j.envres.2022.114487].
Textile microfibers in wild Antarctic whelk Neobuccinum eatoni (Smith, 1875) from Terra Nova Bay (Ross Sea, Antarctica)
Bergami, E.
;Ferrari, E.;Corsi, I.
2023-01-01
Abstract
Antarctica has been affected directly and indirectly by human pressure for more than two centuries and recently plastic pollution has been recognized as a further potential threat for its unique biodiversity. Global long-range transport as well as local input from anthropogenic activities are potential sources of plastic pollution in both terrestrial and marine Antarctic territories. The present study evaluated the presence of microplastics in speci-mens of the Antarctic whelk Neobuccinum eatoni, a key species in benthic communities of the Ross Sea, one of the largest marine protected areas worldwide. To this aim, a thermo-oxidative extraction method was applied for microplastic isolation and quantification, and polymer identification was performed by manual mu-FTIR spec-troscopy. Textile (semi-)synthetic or composite microfibers (length range: 0.8-5.7 mm) were found in 27.3% of whelk specimens, suggesting a low risk of bioaccumulation along Antarctic benthic food webs in the Ross Sea. Their polymer composition (of polyethylene terephthalate and cellulose-polyamide composites) matched those of outdoor technical clothing in use by the personnel of the Italian "Mario Zucchelli" station near Terra Nova Bay in the Ross Sea. Such findings indicate that sewage from base stations may act as potential local sources of textile microplastic fibers in this remote environment. More in-depth monitoring studies aiming at defining the extent of microplastic contamination related to such sources in Antarctica are encouraged.File | Dimensione | Formato | |
---|---|---|---|
textile.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.34 MB
Formato
Adobe PDF
|
3.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1224285