Coffea arabica L. leaves represent a viable alternative to the canonical matrices used for preparation of beverages, such as tea leaves and grounded coffee beans. Coffee leaves infusions are rich in antioxidant phenolic compounds and have a lower concentration of caffeine. Due to increasing interest in this field, a complete study of the bioactive compounds as chlorogenic acids, xanthones and alkaloids is noteworthy. C. arabica leaves were subjected to ultrasound-assisted extraction, and the extracts were studied via nuclear magnetic resonance spectroscopy (NMR) and chromatographic techniques coupled with mass spectrometry (HPLC-MSn) to identify and quantify the secondary metabolites profile through an untargeted data dependent approach. A quantitative analysis was performed for the major components—chlorogenic acids, mangiferin, caffeine and trigonelline—via HPLC-MS in Single Ion Monitoring (SIM) mode. In total, 39 compounds were identified. The presence of these bioactive compounds proved the strong potential of C. arabica leaves as functional food and as an alternative to classic infused beverages.
Cangeloni, L., Bonechi, C., Leone, G., Consumi, M., Andreassi, M., Magnani, A., et al. (2022). Characterization of Extracts of Coffee Leaves (Coffea arabica L.) by Spectroscopic and Chromatographic/Spectrometric Techniques. FOODS, 11(16) [10.3390/foods11162495].
Characterization of Extracts of Coffee Leaves (Coffea arabica L.) by Spectroscopic and Chromatographic/Spectrometric Techniques
Cangeloni, Lorenzo;Bonechi, Claudia;Leone, Gemma;Consumi, Marco;Andreassi, Marco;Magnani, Agnese;Rossi, Claudio;Tamasi, Gabriella
2022-01-01
Abstract
Coffea arabica L. leaves represent a viable alternative to the canonical matrices used for preparation of beverages, such as tea leaves and grounded coffee beans. Coffee leaves infusions are rich in antioxidant phenolic compounds and have a lower concentration of caffeine. Due to increasing interest in this field, a complete study of the bioactive compounds as chlorogenic acids, xanthones and alkaloids is noteworthy. C. arabica leaves were subjected to ultrasound-assisted extraction, and the extracts were studied via nuclear magnetic resonance spectroscopy (NMR) and chromatographic techniques coupled with mass spectrometry (HPLC-MSn) to identify and quantify the secondary metabolites profile through an untargeted data dependent approach. A quantitative analysis was performed for the major components—chlorogenic acids, mangiferin, caffeine and trigonelline—via HPLC-MS in Single Ion Monitoring (SIM) mode. In total, 39 compounds were identified. The presence of these bioactive compounds proved the strong potential of C. arabica leaves as functional food and as an alternative to classic infused beverages.File | Dimensione | Formato | |
---|---|---|---|
foods-11-02495.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
2.82 MB
Formato
Adobe PDF
|
2.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1222614