Background: The COVID19 epidemic highlighted the importance of air in the transmission of pathogens. Air disinfection is one of the key points to reduce the risk of transmission both in the health sector and in public, civil and industrial environments. All bacteria and viruses tested to date can be inactivated by UV-C rays. Laboratory tested UV-C systems are increasingly popular and proposed as effective technologies for air purification; few studies have evaluated their performance in populated indoor environments. The aim of this investigation was to evaluate the effectiveness of a UV-C disinfection system for air in a real working context. Methods: This experimental study was conducted between December 2020 and February 2021 in an office of the Department of Molecular and Developmental Medicine of the University of Siena, Italy. A pre-final version air purifier (Cleaning Air T12), capable of treating 210 m3/h of air, was first tested for its ability to filter particulates and reduce microbial air contamination in the absence of people. Subsequently, the experiments were conducted in the presence of 3–5 subjects who worked for several hours in an office. During the tests, microbiological samples of air were collected in real time, switching the system on and off periodically. Air samples were collected and incubated on Petri dishes at 36 ◦C and 22 ◦C. Statistical analysis was performed with Stata 16 software assuming a significance level of 95%. An interpolating model was identified to describe the dynamics of contamination reduction when the device operates. Results: Preliminary tests showed a significant 62.5% reduction in Colony-Forming Units (CFUs) with 36 ◦C incubation. Reductions in the particulate component were also observed. In the main test, comparison of CFU data, between the device-on phase (90 min) and the subsequent device-off phase (60 min), showed statistically significant increase (p = 0.001) of environmental contamination passing from a mean of 86.6 (65.8–107.4) to 171.1 (143.9–198.3) CFU/m3, that is a rise of about 100%. The interpolating model exhibited a good fit of CFU reduction trend with the device on. Conclusions: The system, which mainly uses UV-C lamps for disinfection, was able to significantly reduce envi- ronmental and human contamination in real time. Experimental tests have shown that as soon as the device is switched off, after at least half an hour of operation, the healthiness of the air decreases drastically within 10 minutes, bringing the airborne microbial contamination (induced by the presence of operators in the environ- ment) to levels even higher than 150% of the last value with the device on. Re-engineering strategies for system improvement were also discussed

Messina, G., Amodeo, D., Taddeini, F., De Palma, I., Puccio, A., Cevenini, G. (2022). Wind of change: Better air for microbial environmental control. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING, 6, 1-9 [10.1016/j.cscee.2022.100240].

Wind of change: Better air for microbial environmental control

Messina, G.;Amodeo, D.;Taddeini, F.;De Palma, I.;Cevenini, G.
2022-01-01

Abstract

Background: The COVID19 epidemic highlighted the importance of air in the transmission of pathogens. Air disinfection is one of the key points to reduce the risk of transmission both in the health sector and in public, civil and industrial environments. All bacteria and viruses tested to date can be inactivated by UV-C rays. Laboratory tested UV-C systems are increasingly popular and proposed as effective technologies for air purification; few studies have evaluated their performance in populated indoor environments. The aim of this investigation was to evaluate the effectiveness of a UV-C disinfection system for air in a real working context. Methods: This experimental study was conducted between December 2020 and February 2021 in an office of the Department of Molecular and Developmental Medicine of the University of Siena, Italy. A pre-final version air purifier (Cleaning Air T12), capable of treating 210 m3/h of air, was first tested for its ability to filter particulates and reduce microbial air contamination in the absence of people. Subsequently, the experiments were conducted in the presence of 3–5 subjects who worked for several hours in an office. During the tests, microbiological samples of air were collected in real time, switching the system on and off periodically. Air samples were collected and incubated on Petri dishes at 36 ◦C and 22 ◦C. Statistical analysis was performed with Stata 16 software assuming a significance level of 95%. An interpolating model was identified to describe the dynamics of contamination reduction when the device operates. Results: Preliminary tests showed a significant 62.5% reduction in Colony-Forming Units (CFUs) with 36 ◦C incubation. Reductions in the particulate component were also observed. In the main test, comparison of CFU data, between the device-on phase (90 min) and the subsequent device-off phase (60 min), showed statistically significant increase (p = 0.001) of environmental contamination passing from a mean of 86.6 (65.8–107.4) to 171.1 (143.9–198.3) CFU/m3, that is a rise of about 100%. The interpolating model exhibited a good fit of CFU reduction trend with the device on. Conclusions: The system, which mainly uses UV-C lamps for disinfection, was able to significantly reduce envi- ronmental and human contamination in real time. Experimental tests have shown that as soon as the device is switched off, after at least half an hour of operation, the healthiness of the air decreases drastically within 10 minutes, bringing the airborne microbial contamination (induced by the presence of operators in the environ- ment) to levels even higher than 150% of the last value with the device on. Re-engineering strategies for system improvement were also discussed
2022
Messina, G., Amodeo, D., Taddeini, F., De Palma, I., Puccio, A., Cevenini, G. (2022). Wind of change: Better air for microbial environmental control. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING, 6, 1-9 [10.1016/j.cscee.2022.100240].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2666016422000627-main.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 2.76 MB
Formato Adobe PDF
2.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1221176