Let Γ(n,k) be the Grassmann graph formed by the k-dimensional subspaces of a vector space of dimension n over a field F and, for t∈N∖{0}, let Δt(n,k) be the subgraph of Γ(n,k) formed by the set of linear [n,k]-codes having minimum dual distance at least t+1. We show that if |F|≥(nt) then Δt(n,k) is connected and it is isometrically embedded in Γ(n,k).

Cardinali, I., Giuzzi, L., Kwiatkowski, M. (2021). On the Grassmann graph of linear codes. FINITE FIELDS AND THEIR APPLICATIONS, 75 [10.1016/j.ffa.2021.101895].

On the Grassmann graph of linear codes

Cardinali I.
;
2021

Abstract

Let Γ(n,k) be the Grassmann graph formed by the k-dimensional subspaces of a vector space of dimension n over a field F and, for t∈N∖{0}, let Δt(n,k) be the subgraph of Γ(n,k) formed by the set of linear [n,k]-codes having minimum dual distance at least t+1. We show that if |F|≥(nt) then Δt(n,k) is connected and it is isometrically embedded in Γ(n,k).
Cardinali, I., Giuzzi, L., Kwiatkowski, M. (2021). On the Grassmann graph of linear codes. FINITE FIELDS AND THEIR APPLICATIONS, 75 [10.1016/j.ffa.2021.101895].
File in questo prodotto:
File Dimensione Formato  
Grassmann graph of linear codes.pdf

accesso solo dalla rete interna

Descrizione: Articolo principale
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 370.64 kB
Formato Adobe PDF
370.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
GeoCodes-1-FFA-pre print.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 245.39 kB
Formato Adobe PDF
245.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1179086