The present paper describes the functionalization of sodium hyaluronate (NaHA) with a small molecule (2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide) (MMPI) having proven inhibitory activity against membrane metalloproteins involved in inflammatory processes (i.e. MMP12). The obtained derivative (HA-MMPI) demonstrated an increased resistance to the in-vitro degradation by hyaluronidase, viscoelastic properties close to those of healthy human synovial fluid, cytocompatibility towards human chondrocytes and nanomolar affinity towards MMP 12. Thus, HA-MMPI can be considered a good candidate as viscosupplement in the treatment of knee osteoarticular disease.
Leone, G., Pepi, S., Consumi, M., Lamponi, S., Fragai, M., Martinucci, M., et al. (2021). Sodium hyaluronate-g-2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide with enhanced affinity towards MMP12 catalytic domain to be used as visco-supplement with increased degradation resistance. CARBOHYDRATE POLYMERS, 271 [10.1016/j.carbpol.2021.118452].
Sodium hyaluronate-g-2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide with enhanced affinity towards MMP12 catalytic domain to be used as visco-supplement with increased degradation resistance
Leone G.;Pepi S.;Consumi M.;Lamponi S.;Magnani A.
2021-01-01
Abstract
The present paper describes the functionalization of sodium hyaluronate (NaHA) with a small molecule (2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide) (MMPI) having proven inhibitory activity against membrane metalloproteins involved in inflammatory processes (i.e. MMP12). The obtained derivative (HA-MMPI) demonstrated an increased resistance to the in-vitro degradation by hyaluronidase, viscoelastic properties close to those of healthy human synovial fluid, cytocompatibility towards human chondrocytes and nanomolar affinity towards MMP 12. Thus, HA-MMPI can be considered a good candidate as viscosupplement in the treatment of knee osteoarticular disease.File | Dimensione | Formato | |
---|---|---|---|
Hyal_MAM.pdf
non disponibili
Descrizione: Articolo
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1156449