Engineered nanoparticles (ENPs) have been produced by nano-biotech companies in recent decades to generate innovative goods in various fields, including agriculture, electronics, biomedicine, manufacturing, pharmaceuticals and cosmetics. The nano-scale size of the particles can confer novel and significantly improved physical, chemical and biological properties to scientific phenomena and processes. As their applications to science and technology expand, the need to understand the putative noxious effects of ENPs on humans and ecosystems is becoming increasingly important. ENPs are emerging as a new class of pollutants with eco-toxicological impacts on marine ecosystems because the particles can end up in waterways and reach the sea. Recent laboratory studies in invertebrates and fishes suggest that exposure to ENPs could have harmful effects. Because there is not much data available for gauging the effects of ENPs on marine wildlife, the ultimate ecotoxicological impacts of chronic exposure to ENPs should be investigated further using laboratory tests and field studies. We propose the use of model organisms to understand the molecular pathways involved in the mechanisms that may be affected by exposure to ENPs. Sensitive and innovative molecular methods will provide information regarding the hazards of ENPs that may exist in the marine environment. Model organisms that have not been conventionally used for risk assessment and the development of eco-toxicogenomic approaches will result in an improved understanding of the mechanistic modes of action of contaminating ENPs in the marine environment. © 2012 Elsevier Ltd.

Matranga, V., Corsi, I. (2012). Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. MARINE ENVIRONMENTAL RESEARCH, 76(special issue), 32-40 [10.1016/j.marenvres.2012.01.006].

Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches

Corsi, I.
2012-01-01

Abstract

Engineered nanoparticles (ENPs) have been produced by nano-biotech companies in recent decades to generate innovative goods in various fields, including agriculture, electronics, biomedicine, manufacturing, pharmaceuticals and cosmetics. The nano-scale size of the particles can confer novel and significantly improved physical, chemical and biological properties to scientific phenomena and processes. As their applications to science and technology expand, the need to understand the putative noxious effects of ENPs on humans and ecosystems is becoming increasingly important. ENPs are emerging as a new class of pollutants with eco-toxicological impacts on marine ecosystems because the particles can end up in waterways and reach the sea. Recent laboratory studies in invertebrates and fishes suggest that exposure to ENPs could have harmful effects. Because there is not much data available for gauging the effects of ENPs on marine wildlife, the ultimate ecotoxicological impacts of chronic exposure to ENPs should be investigated further using laboratory tests and field studies. We propose the use of model organisms to understand the molecular pathways involved in the mechanisms that may be affected by exposure to ENPs. Sensitive and innovative molecular methods will provide information regarding the hazards of ENPs that may exist in the marine environment. Model organisms that have not been conventionally used for risk assessment and the development of eco-toxicogenomic approaches will result in an improved understanding of the mechanistic modes of action of contaminating ENPs in the marine environment. © 2012 Elsevier Ltd.
2012
Matranga, V., Corsi, I. (2012). Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. MARINE ENVIRONMENTAL RESEARCH, 76(special issue), 32-40 [10.1016/j.marenvres.2012.01.006].
File in questo prodotto:
File Dimensione Formato  
Matranga & Corsi 2012.pdf

non disponibili

Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 216.98 kB
Formato Adobe PDF
216.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/11311
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo