Background: Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists’ experience and fails to achieve adequate accuracy and reproducibility in discriminating atypical nevi (AN) from early melanomas (EM). Objective: We aimed to develop a Deep Convolutional Neural Network (DCNN) model able to support dermatologists in the classification and management of atypical melanocytic skin lesions (aMSL). Methods: A training set (630 images), a validation set (135) and a testing set (214) were derived from the idScore dataset of 979 challenging aMSL cases in which the dermoscopic image is integrated with clinical data (age, sex, body site and diameter) and associated with histological data. A DCNN_aMSL architecture was designed and then trained on both dermoscopic images of aMSL and the clinical/anamnestic data, resulting in the integrated “iDCNN_aMSL” model. Responses of 111 dermatologists with different experience levels on both aMSL classification (intuitive diagnosis) and management decisions (no/long follow-up; short follow-up; excision/preventive excision) were compared with the DCNNs models. Results: In the lesion classification study, the iDCNN_aMSL achieved the best accuracy, reaching an AUC =90.3 %, SE = 86.5 % and SP = 73.6 %, compared to DCNN_aMSL (SE = 89.2 %, SP = 65.7 %) and intuitive diagnosis of dermatologists (SE = 77.0 %; SP = 61.4 %). Conclusions: The iDCNN_aMSL proved to be the best support tool for management decisions reducing the ratio of inappropriate excision. The proposed iDCNN_aMSL model can represent a valid support for dermatologists in discriminating AN from EM with high accuracy and for medical decision making by reducing their rates of inappropriate excisions.

Tognetti, L., Bonechi, S., Andreini, P., Bianchini, M., Scarselli, F., Cevenini, G., et al. (2021). A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi. JOURNAL OF DERMATOLOGICAL SCIENCE, 101(2), 115-122 [10.1016/j.jdermsci.2020.11.009].

A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi

Linda Tognetti
;
Simone Bonechi;Paolo Andreini;Monica Bianchini;Franco Scarselli;Gabriele Cevenini;Elisa Cinotti;Gennaro Cataldo;Alberto Balistreri;Alessandro Mecocci;Marco Gori;Pietro Rubegni;Alessandra Cartocci
2021-01-01

Abstract

Background: Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists’ experience and fails to achieve adequate accuracy and reproducibility in discriminating atypical nevi (AN) from early melanomas (EM). Objective: We aimed to develop a Deep Convolutional Neural Network (DCNN) model able to support dermatologists in the classification and management of atypical melanocytic skin lesions (aMSL). Methods: A training set (630 images), a validation set (135) and a testing set (214) were derived from the idScore dataset of 979 challenging aMSL cases in which the dermoscopic image is integrated with clinical data (age, sex, body site and diameter) and associated with histological data. A DCNN_aMSL architecture was designed and then trained on both dermoscopic images of aMSL and the clinical/anamnestic data, resulting in the integrated “iDCNN_aMSL” model. Responses of 111 dermatologists with different experience levels on both aMSL classification (intuitive diagnosis) and management decisions (no/long follow-up; short follow-up; excision/preventive excision) were compared with the DCNNs models. Results: In the lesion classification study, the iDCNN_aMSL achieved the best accuracy, reaching an AUC =90.3 %, SE = 86.5 % and SP = 73.6 %, compared to DCNN_aMSL (SE = 89.2 %, SP = 65.7 %) and intuitive diagnosis of dermatologists (SE = 77.0 %; SP = 61.4 %). Conclusions: The iDCNN_aMSL proved to be the best support tool for management decisions reducing the ratio of inappropriate excision. The proposed iDCNN_aMSL model can represent a valid support for dermatologists in discriminating AN from EM with high accuracy and for medical decision making by reducing their rates of inappropriate excisions.
2021
Tognetti, L., Bonechi, S., Andreini, P., Bianchini, M., Scarselli, F., Cevenini, G., et al. (2021). A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi. JOURNAL OF DERMATOLOGICAL SCIENCE, 101(2), 115-122 [10.1016/j.jdermsci.2020.11.009].
File in questo prodotto:
File Dimensione Formato  
A new deep learning approach-Tognetti-2021.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1123492