The cardiac membrane protein phospholamban (PLN) is targeted by protein kinase A (PKA) at Ser16 and by Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr17 β-Adrenergic stimulation and PKA-dependent phosphorylation of Ser16 acutely stimulate the sarcoplasmic reticulum calcium pump (SERCA) by relieving its inhibition by PLN. CaMKII-dependent phosphorylation may lead to longer-lasting SERCA stimulation and may sustain maladaptive Ca2+ handling. Here, we demonstrated that phosphorylation at either Ser16 or Thr17 converted PLN into a target for the phosphoadaptor protein 14-3-3 with different affinities. 14-3-3 proteins were localized within nanometers of PLN and endogenous 14-3-3 coimmunoprecipitated with pentameric PLN from cardiac membranes. Molecular dynamics simulations predicted different molecular contacts for peptides phosphorylated at Ser16 or Thr17 with the binding groove of 14-3-3, resulting in varied binding affinities. 14-3-3 binding protected either PLN phosphosite from dephosphorylation. β-Adrenergic stimulation of isolated adult cardiomyocytes resulted in the membrane recruitment of endogenous 14-3-3. The exogenous addition of 14-3-3 to β-adrenergic-stimulated cardiomyocytes led to prolonged SERCA activation, presumably because 14-3-3 protected PLN pentamers from dephosphorylation. Phosphorylation of Ser16 was disrupted by the cardiomyopathy-associated ∆Arg14 mutation, implying that phosphorylation of Thr17 by CaMKII may become crucial for 14-3-3 recruitment to ∆Arg14 PLN. Consistent with PLN acting as a dynamic hub in the control of Ca2+ handling, our results identify 14-3-3 binding to PLN as a contractility-augmenting mechanism.

Menzel, J., Kownatzki-Danger, D., Tokar, S., Ballone, A., Unthan-Fechner, K., Kilisch, M., et al. (2020). 14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban. SCIENCE SIGNALING, 13(647) [10.1126/scisignal.aaz1436].

14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban

Mori M.;
2020-01-01

Abstract

The cardiac membrane protein phospholamban (PLN) is targeted by protein kinase A (PKA) at Ser16 and by Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr17 β-Adrenergic stimulation and PKA-dependent phosphorylation of Ser16 acutely stimulate the sarcoplasmic reticulum calcium pump (SERCA) by relieving its inhibition by PLN. CaMKII-dependent phosphorylation may lead to longer-lasting SERCA stimulation and may sustain maladaptive Ca2+ handling. Here, we demonstrated that phosphorylation at either Ser16 or Thr17 converted PLN into a target for the phosphoadaptor protein 14-3-3 with different affinities. 14-3-3 proteins were localized within nanometers of PLN and endogenous 14-3-3 coimmunoprecipitated with pentameric PLN from cardiac membranes. Molecular dynamics simulations predicted different molecular contacts for peptides phosphorylated at Ser16 or Thr17 with the binding groove of 14-3-3, resulting in varied binding affinities. 14-3-3 binding protected either PLN phosphosite from dephosphorylation. β-Adrenergic stimulation of isolated adult cardiomyocytes resulted in the membrane recruitment of endogenous 14-3-3. The exogenous addition of 14-3-3 to β-adrenergic-stimulated cardiomyocytes led to prolonged SERCA activation, presumably because 14-3-3 protected PLN pentamers from dephosphorylation. Phosphorylation of Ser16 was disrupted by the cardiomyopathy-associated ∆Arg14 mutation, implying that phosphorylation of Thr17 by CaMKII may become crucial for 14-3-3 recruitment to ∆Arg14 PLN. Consistent with PLN acting as a dynamic hub in the control of Ca2+ handling, our results identify 14-3-3 binding to PLN as a contractility-augmenting mechanism.
2020
Menzel, J., Kownatzki-Danger, D., Tokar, S., Ballone, A., Unthan-Fechner, K., Kilisch, M., et al. (2020). 14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban. SCIENCE SIGNALING, 13(647) [10.1126/scisignal.aaz1436].
File in questo prodotto:
File Dimensione Formato  
14-3-3 binding creates-Menzel-2020.pdf

non disponibili

Descrizione: Articolo
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1120352