Colistin is an antimicrobial peptide (AMP) used as a drug of last resort, although plasmid-mediated colistin resistance (MCR) has been reported. AA139 and SET-M33 are novel AMPs currently in development for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. As many AMPs have a similar mode of action to colistin, potentially leading to cross-resistance, the antimicrobial activity of AA139 and SET-M33 was investigated against a collection of 50 clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles, including colistin-resistant strains. The collection was genotypically characterised and susceptibility to clinically relevant antibiotics was determined. Susceptibility to AA139 and SET-M33 did not differ among the collection despite differences in underlying mechanisms of resistance or susceptibility to colistin. For three colistin-susceptible and three colistin-resistant strains with distinct MDR profiles as well as an additional MCR-producing strain, the bactericidal activity of AA139, SET-M33 and colistin during 24 h of exposure was examined. Following 24 h of exposure to AA139, SET-M33 or colistin, the seven strains were tested for changes in susceptibility to the respective AMPs. AA139 and SET-M33 showed a concentration-dependent bactericidal effect irrespective of bacterial susceptibility to colistin. Exposure to low colistin concentrations resulted in the development of colistin resistance in colistin-susceptible strains, whereas susceptibility to AA139 and SET-M33 following exposure to the respective AMPs was maintained. The two novel AMPs remained effective against colistin-resistant strains and may be promising novel drugs for the treatment of clinically and genotypically diverse MDR K. pneumoniae infections, including infections associated with colistin-resistant bacteria.

van der Weide, H., Vermeulen-de Jongh, D.M.C., van der Meijden, A., Boers, S.A., Kreft, D., ten Kate, M.T., et al. (2019). Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 54(2), 159-166 [10.1016/j.ijantimicag.2019.05.019].

Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles

Falciani C.;Pini A.;
2019-01-01

Abstract

Colistin is an antimicrobial peptide (AMP) used as a drug of last resort, although plasmid-mediated colistin resistance (MCR) has been reported. AA139 and SET-M33 are novel AMPs currently in development for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. As many AMPs have a similar mode of action to colistin, potentially leading to cross-resistance, the antimicrobial activity of AA139 and SET-M33 was investigated against a collection of 50 clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles, including colistin-resistant strains. The collection was genotypically characterised and susceptibility to clinically relevant antibiotics was determined. Susceptibility to AA139 and SET-M33 did not differ among the collection despite differences in underlying mechanisms of resistance or susceptibility to colistin. For three colistin-susceptible and three colistin-resistant strains with distinct MDR profiles as well as an additional MCR-producing strain, the bactericidal activity of AA139, SET-M33 and colistin during 24 h of exposure was examined. Following 24 h of exposure to AA139, SET-M33 or colistin, the seven strains were tested for changes in susceptibility to the respective AMPs. AA139 and SET-M33 showed a concentration-dependent bactericidal effect irrespective of bacterial susceptibility to colistin. Exposure to low colistin concentrations resulted in the development of colistin resistance in colistin-susceptible strains, whereas susceptibility to AA139 and SET-M33 following exposure to the respective AMPs was maintained. The two novel AMPs remained effective against colistin-resistant strains and may be promising novel drugs for the treatment of clinically and genotypically diverse MDR K. pneumoniae infections, including infections associated with colistin-resistant bacteria.
2019
van der Weide, H., Vermeulen-de Jongh, D.M.C., van der Meijden, A., Boers, S.A., Kreft, D., ten Kate, M.T., et al. (2019). Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 54(2), 159-166 [10.1016/j.ijantimicag.2019.05.019].
File in questo prodotto:
File Dimensione Formato  
Antimicrobial activity of two novel-2019.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
FALCIANI-Antimicrobial activity of two novel-Post--Print.pdf

accesso aperto

Descrizione: Accepted Manuscript
Tipologia: Post-print
Licenza: Creative commons
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1105146