We study effectively inseparable (abbreviated as e.i.) prelattices. Solving a problem raised by Montagna and Sorbi (1985) we show that if L is an e.i. prelattice then the preordering relation of L is universal with respect to all c.e. pre-ordering relations. In fact it is locally universal, i.e. in any nonempty interval one can computably embed every c.e. pre-ordering relation. Also the preordering relation of L is uniformly dense. Some consequences and applications of these results are discussed, in particular to derive uniform density and local universality for certain prelattices of sentences arising in logic.

Sorbi, A., Andrews, U. (2021). Effective inseparability, lattices, and preordering relations. THE REVIEW OF SYMBOLIC LOGIC, 14(4), 838-865 [10.1017/S1755020319000273].

Effective inseparability, lattices, and preordering relations

Andrea Sorbi
;
2021-01-01

Abstract

We study effectively inseparable (abbreviated as e.i.) prelattices. Solving a problem raised by Montagna and Sorbi (1985) we show that if L is an e.i. prelattice then the preordering relation of L is universal with respect to all c.e. pre-ordering relations. In fact it is locally universal, i.e. in any nonempty interval one can computably embed every c.e. pre-ordering relation. Also the preordering relation of L is uniformly dense. Some consequences and applications of these results are discussed, in particular to derive uniform density and local universality for certain prelattices of sentences arising in logic.
2021
Sorbi, A., Andrews, U. (2021). Effective inseparability, lattices, and preordering relations. THE REVIEW OF SYMBOLIC LOGIC, 14(4), 838-865 [10.1017/S1755020319000273].
File in questo prodotto:
File Dimensione Formato  
effective-inseparabilityAndrews-Sorbi.pdf

non disponibili

Descrizione: file
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 464.04 kB
Formato Adobe PDF
464.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1901.06136.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 356.28 kB
Formato Adobe PDF
356.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1079596