We study the mean curvature motion of a droplet flowing by mean curvature on a horizontal hyperplane with a possibly nonconstant prescribed contact angle. Using the solutions constructed as a limit of an approximation algorithm of Almgren-Taylor-Wang and Luckhaus-Sturzenhecker, we show the existence of a weak evolution, and its compatibility with a distributional solution. We also prove various comparison results.
Bellettini, G., Kholmatov, S.Y. (2018). Minimizing movements for mean curvature flow of droplets with prescribed contact angle. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 117, 1-58 [10.1016/j.matpur.2018.06.003].
Minimizing movements for mean curvature flow of droplets with prescribed contact angle
Bellettini, Giovanni;
2018-01-01
Abstract
We study the mean curvature motion of a droplet flowing by mean curvature on a horizontal hyperplane with a possibly nonconstant prescribed contact angle. Using the solutions constructed as a limit of an approximation algorithm of Almgren-Taylor-Wang and Luckhaus-Sturzenhecker, we show the existence of a weak evolution, and its compatibility with a distributional solution. We also prove various comparison results.File | Dimensione | Formato | |
---|---|---|---|
2018_Bellettini_Holmatov_JMPA.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
926.96 kB
Formato
Adobe PDF
|
926.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
bellettini_kholmatov_JMPA_17_2054PREPRINT11365-1029444.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
365.05 kB
Formato
Adobe PDF
|
365.05 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1029444