In this paper we propose a blockwise Euclidean likelihood method for the estimation of a spatial binary field obtained by thresholding a latent Gaussian random field. The moment conditions used in the Euclidean likelihood estimator derive from the score of the composite likelihood based on marginal pairs. A feature of this approach is that it is possible to obtain computational benefits with respect to the pairwise likelihood depending on the choice of the spatial blocks. A simulation study and an analysis on cancer mortality data compares the two methods in terms of statistical and computational efficiency. We also study the asymptotic properties of the proposed estimator.

Bevilacqua, M., Crudu, F., Porcu, E. (2015). Combining Euclidean and composite likelihood for binary spatial data estimation. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 29(2), 335-346 [10.1007/s00477-014-0938-8].

Combining Euclidean and composite likelihood for binary spatial data estimation

CRUDU, FEDERICO;
2015-01-01

Abstract

In this paper we propose a blockwise Euclidean likelihood method for the estimation of a spatial binary field obtained by thresholding a latent Gaussian random field. The moment conditions used in the Euclidean likelihood estimator derive from the score of the composite likelihood based on marginal pairs. A feature of this approach is that it is possible to obtain computational benefits with respect to the pairwise likelihood depending on the choice of the spatial blocks. A simulation study and an analysis on cancer mortality data compares the two methods in terms of statistical and computational efficiency. We also study the asymptotic properties of the proposed estimator.
2015
Bevilacqua, M., Crudu, F., Porcu, E. (2015). Combining Euclidean and composite likelihood for binary spatial data estimation. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 29(2), 335-346 [10.1007/s00477-014-0938-8].
File in questo prodotto:
File Dimensione Formato  
SERR-D-13-00348R3.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Post-print
Licenza: Creative commons
Dimensione 454.88 kB
Formato Adobe PDF
454.88 kB Adobe PDF Visualizza/Apri
Bevilacqua2015_Article_CombiningEuclideanAndComposite.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 634.63 kB
Formato Adobe PDF
634.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1005851