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Abstract In this paper we propose a blockwise Euclidean likelihood method for the estimation of
a spatial binary field obtained by thresholding a latent Gaussian random field. The moment condi-
tions used in the Euclidean likelihood estimator derive from the score of the composite likelihood
based on marginal pairs. A feature of this approach is that it is possible to obtain computational
benefits with respect to the pairwise likelihood depending on the choice of the spatial blocks. A
simulation study and an analysis on cancer mortality data compares the two methods in terms of
statistical and computational efficiency. We also study the asymptotic properties of the proposed
estimator.

Keywords Binary Spatial Fields · Latent Gaussian fields · Euclidean Likelihood · Composite
Likelihood

1 Introduction

Estimation of the dependence structure in spatial processes has drawn the attention of many
scientists in the last twenty years. Random fields are the mathematical framework for statistical
analysis of spatial data and parametric inference based on the maximum likelihood (ML) method is
generally considered the best option for the estimation of spatial dependence under this framework.
However, fitting models through ML may be troublesome. In the case of Gaussian fields, for
instance, ML is impractical when the dataset is large, since its evaluation requires a computational
burden of the order O(n3), where n is the number of spatial locations. This problem is exacerbated
in the estimation of the covariance model associated to multivariate random fields (Porcu et
al. (2013); Gneiting et al. (2010)). For this reason, in the last years there has been a growing
interest in proposing new computationally feasible methods for estimating spatial Gaussian data.
In particular, the objective is to find methods that allow for a reasonable compromise between
statistical and computational efficiency. See Rue & Tjelmeland (2002) and the survey by Sun et
al. (2012) for an exhaustive illustration of the problem.

Working under the assumption of Gaussianity of the underlying spatial field simplifies things
considerably, since one only has to focus on the second-order structure of the field. Unfortunately,
many applications to ecology and epidemiology show that the assumption of Gaussianity is often
violated (see for example Adler (2008)). A widely discussed example is the case of binary spatial
data. For instance, P. Lin & Clayton (2005) proposed a quasi-likelihood approach while Albert &
McShane (1995) consider a generalized estimating equation approach in the context of generalized
linear models. Sherman et al. (2006) in the context of spatial autologistic models proposed the use
of composite and Monte Carlo ML estimation. In the geostatistical framework, the case of binary
data has been faced through several alternative approaches to the classical kriging predictor, such
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as indicator (Journel (1983)) or disjunctive kriging (Matheron (1976)), or again trans-Gaussian
kriging (Cressie (1993)).

Heagerty & Lele (1998), instead, following the literature on hierarchical models, derive the
joint probability model through the specification of a spatial Gaussian latent process. Specifically,
a latent Gaussian field is thresholded in order to obtain a binary field. Thus, the finite dimensional
distributions can be deduced through algebraic manipulation. Unfortunately, the joint distribution
involves a sum of 2n-dimensional Gaussian integrals. Once again, the evaluation of the likelihood
as n increases becomes computationally demanding.

Under this framework, Heagerty & Lele (1998) proposed a special case of composite likelihood
(CL) based on pairs, also known as pairwise likelihood (PL). CL is a class of estimating functions
that contains, and thus generalizes, ordinary likelihood methods (see Varin et al. (2011) for a
complete review). One of the features of CL is that it is possible to perform inference on the
parameters at a reduced computational cost. This makes it a useful estimation method when we
deal with large datasets. See also Caragea & Smith (2006), Fuentes (2007), Lindsay (1988), Stein
(2008), Stein et al. (2004) and Vecchia (1988).

Lunardon et al. (2012), in the IID case, use empirical likelihood (EL) with moment conditions
coming from the score function of the PL in order to overcome the problem of non standard
asymptotic distribution of the likelihood ratio statistic of the PL. See also Qin & Lawless (1994)
for a general reference on EL estimation for moment condition models.

Our proposal is in the same spirit of Lunardon et al. (2012), but with three main differences.
First, we consider an Euclidean likelihood (EU) estimator. Like EL, EU estimators are the result
of a complicated optimization problem. However, unlike EL, EU does not need a joint numerical
solution of the parameter of interest and the auxiliary parameter. In fact, the estimator of the
auxiliary parameter has a closed form and the parameters of the model can be estimated by
minimizing a simple quadratic form.

Second, we combine the EU estimator with a blockwise approach. The resulting estimator is
the natural extension of the EU estimator in the IID case to the dependent data case. See for
instance Kitamura (1997) in the context of time series and Nordman & Caragea (2008) for spatial
variogram estimation.

Third, the aim of considering a blockwise Euclidean likelihood is to further reduce the compu-
tational cost associated to PL estimation.

The paper is organized as follows. In Section 2, PL and EU estimation methods are briefly
reviewed while in Section 3 we describe the spatial binary random field model obtained through
a latent Gaussian field. The proposed blockwise EU method with moment condtions coming from
the PL approach is discussed in Section 4. In Section 5 we study the asymptotic properties of
the proposed estimator while in Section 6 a simulation study compares the PL estimator with
the proposed method. Section 7 contains an application to cancer mortality data. Finally, some
concluding remarks are given in Section 8.

2 Composite and Euclidean Likelihoods

2.1 Composite Likelihood

CL is a class of estimating functions that contains, and thus generalizes, standard likelihood
methods. One of the features of CL is that it is possible to perform inference on the parameters
at a reduced computational cost. The most successful case of the CL class is probably the PL
function. (see for instance Bevilacqua & Gaetan (2014), Padoan et al. (2010) and Heagerty & Lele
(1998)).

Let Z = (Z1, . . . , Zn)ᵀ be a realization from a n dimensional random vector with joint distri-
bution f(z;θ), θ ∈ Θ ⊆ Rv. Let Lij := L(θ;Aij) be the likelihood associated to the probability
density function of the pairs Aij = (Zi, Zj)

ᵀ. Then the weighted PL function is defined as:

PL(θ) =

n−1∑
i=1

n∑
j=i+1

lij(θ)wij , (1)
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where lij(·) := log(Lij(·)) and wij are positive suitable weights that do not depend on θ. The

maximum PL estimate is given by θ̂ = argmaxθ PL(θ).
A distinctive feature of PL is that the associated pairwise score function, ∇PL(θ), is unbiased,

irrespective of the distributional assumptions on the pairs. Here, ∇PL(·) denotes the gradient
vector obtained through partial differentiation with respect to the elements of the vector θ. In
the binary case and under some specific conditions on the underlying random field, Heagerty &
Lele (1998) show that the PL estimator is consistent and asymptotically Gaussian with covariance
matrix equal to the inverse of the Godambe information matrix

V (θ) = H(θ)J(θ)−1H(θ)ᵀ, (2)

where

H(θ) = −E[∇2PL(θ)], J(θ) = E[∇PL(θ)∇PL(θ) ᵀ], (3)

with ∇2PL(θ) being the matrix of second derivatives.

2.2 Euclidean likelihood

EU is a statistical method for estimation and inference based on the optimization of a discrepancy
function given a set of constraints (see e.g. Owen 2001). This approach has the same spirit as EL
(Owen 1988, 1990, 1991, 2001) as it only changes in the specification of the discrepancy function.
Similarly to EL, EU allows estimation and likelihood-like inference without the need of specifying
a parametric likelihood function. However, while the EL estimator is computed numerically jointly
with the estimation of an auxiliary parameter (vector), the EU estimator is computationally more
tractable as the auxiliary parameter has a closed form solution and the parameter of interest is
calculated via the optimization of a quadratic form.
Let Zi = (Z1i, . . . , Zri)

ᵀ, i = 1, . . . , n be a IID sample as before, and g : Rr × Θ → Rq a known
vector–valued function for which there exists a fixed θ0 ∈ Θ ⊂ Rv such that

E[g(Zi,θ0)] = 0. (4)

The model can be estimated via EU by taking the sample analogue of the expectation and by
solving the associated constrained optimization problem. The EU optimization problem is char-
acterized by the following Lagrangian function

L = −1

2

n∑
i=1

(nπi − 1)2 − nλᵀ
n∑
i=1

πig(Zi,θ) + µ
( n∑
i=1

πi − 1
)
. (5)

By taking the first order conditions and standard calculations we can find an expression for the
weights πi as

πi(θ,λ) =
1

n

(
1− λᵀ(g(Zi,θ)− ĝ(θ))

)
, (6)

where ĝ(θ) =
∑n
i=1 g(Zi,θ)/n, and a close form solution for the auxiliary parameter λ as

λ = Ŝ(θ)−1ĝ(θ) (7)

where Ŝ(θ) =
∑n
i=1(g(Zi,θ) − ĝ(θ))(g(Zi,θ) − ĝ(θ))ᵀ/n. By plugging in Equations (6) and (7)

into the objective function of the Lagrangian (5), we obtain a quadratic form in θ:

1

2

n∑
i=1

(nπi − 1)2 =
n

2
ĝ(θ)ᵀŜ(θ)−1ĝ(θ)

An estimator for θ is found by minimizing the above quadratic form

θ̂EU = arg min
θ
ĝ(θ)ᵀŜ(θ)−1ĝ(θ). (8)
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3 Binary Spatial Data based on latent models

This section is largely expository and readapts to our case the approach proposed in Heagerty &
Lele (1998). In the following, we obtain a spatial field by thresholding a Gaussian field Z(s)+ε(s),
s ∈ Rd. For a given threshold c > 0, we have that

Y (s) = I (Z(s) + ε(s) > c) , s ∈ Rd

is a binary spatial field. Here, I(A) defines the indicator function of the set A, whilst ε(·) is a spatial
white noise with zero mean and covariance function cov (ε(s), ε(s′)) = τ2I({s = s′}). Throughout,
we assume that Z(·), being independent of ε(·), is a weakly stationary and Gaussian field, with a
given mean µ ∈ R and with a stationary and isotropic covariance function belonging to a certain
parametric family. That is,

cov (Z(s), Z(s′)) = σ2ρ (‖s− s′‖;α) , (9)

with ‖ · ‖ denoting the Euclidean seminorm, and where σ2 is the variance of Z, α is a scaling
parameter and ρ is a correlation function so that it is identically equal to one at the origin (s = s′).
The parameter τ2 allows for accounting the presence of microscale effects and it is commonly known
as nugget effect in geostatistics. Since the evaluation of likelihood involves a sum of 2n dimensional
Gaussian integrals, Heagerty & Lele (1998) propose to use PL for estimating the parameters of
the latent spatial process Z. First, notice that the marginal and bivariate distributions can be
explicitly calculated. It is easy to show that

P (Y (s) = 1) = Φ

(
µ− c
σ̃

)
=: p, (10)

where Φ denotes the standard Gaussian distribution and σ̃ :=
√
σ2 + τ2. Also, we have

P
(
Y (s) = a

⋂
Y (s′) = b

)
=: pab, a, b = 0, 1 (11)

and

p11 = Φ2

(
µ− c
σ̃

,
µ− c
σ̃

,
σ2ρ (‖s− s′‖;α)

σ̃2

)
, (12)

with Φ2 denoting the bivariate standard Gaussian distribution. In order to solve identifiability
problems, Heagerty & Lele (1998) adopt a special parameterization that allows to consider σ2 ∈
(0, 1] and τ2 = 1 − σ2, with c = 0. Such a result is obtained by standardizing Z and ε, and the
reader is referred to Heagerty & Lele (1998) for the details. In this case, θ = (µ, σ2, α)ᵀ and the
PL function is as in (1) with:

lij(θ) = zizj log(p11) + (zj(1− zi) + zi(1− zj)) log(p− p11) + (1− zi)(1− zj) log(1− 2p+ p11).
(13)

4 Blockwise spatial Euclidean likelihood

In recent years a number of papers have discussed the possibility of adapting the EL framework
to the case of dependent data. For example, Kitamura (1997) proposes a blockwise EL estimator
for estimating equations in the presence of weakly dependent data. L. Lin & Zhang (2001) analyse
a similar problem for EU.

Our proposal combines pairwise and Euclidean likelihood estimation methods for the estimation
of binary fields in the following way: we suppose the latent spatial process Z(s) is observed at
n locations s1, . . . , sn that belong to the sampling region Rn ⊂ Rd, d ≥ 1. Given an increasing
sequence {γn} of scaling factors, we generate the sampling space Rn by inflating a prototype
region R0 ⊂ (−1/2, 1/2]d by the factor γn, such that Rn = γnR0. With respect to this scheme the
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sampling locations are {s1, . . . , sn} = Rn ∩ Zd. Hence, a set of moment conditions for a known

vector-valued function of (subsets) Z̃ of the observations Z := (Z(s1), . . . , Z(sn))
ᵀ

are defined as

E[g(Z̃,θ0)] = 0.

We now set Z̃ij for the generic pair (Z(si), Z(sj))
ᵀ and we choose g(Z̃ij ,θ) = ∇lij(θ)wij where

∇lij(θ)wij is the pairwise weighted score associated to lij(θ)wij and lij(θ) is as in (13). Then, we
consider the following moment conditions

E[gij(θ0)] = 0, θ0 ∈ Θ. (14)

where gij(θ) = g(Z̃ij ,θ). We implement a blockwise approach similar to Nordman & Caragea
(2008), who deal with the case of EL in the presence of spatial data. Data blocking is a nonpara-
metric device that allows us to model the dependence in the data without particular assumptions
on the structure of the dependence. This approach translates into a modification of the moment
conditions in (14).
Let us now consider a sequence of positive integers {bn} and define a d-dimensional overlapping
block as Bbn(κ) = κ+ bn(−1/2, 1/2]d, with κ ∈ Zd. We require that bn grow at a slower rate than
γn, i.e. b2n/γn → 0. Subsequently, we are being intentionally sloppy in omitting the subindex n for
the following quantitities: this allows to simplify considerably the notation.

Then, a blockwise analogue of Equation (14) is

E[mκ(θ0)] = 0, θ0 ∈ Θ. (15)

where the moment conditions mκ(θ) are defined as

mκ(θ) =
1

bd

∑
{i,j}∈Aijκ

gij(θ), (16)

with Aijκ := {(i, j) : (si, sj) ∈ Bb(κ) ∩ Zd, i = 1, . . . , nκ − 1, j = i + 1, . . . , nκ}. Here nκ is the
number of location sites in the block κ. The parameter b is the side length of the spatial block
and can be viewed as a bandwidth parameter. Suppose we dispose of N blocks. Then the spatial
blockwise Euclidean likelihood (denoted SBEU) estimator is the result of the following constrained
optimization problem

L = −1

2

∑
κ

(Nπκ − 1)2 −Nλᵀ
∑
κ

πκmκ(θ) + µ
(∑

κ

πκ − 1
)
. (17)

An estimator for the parameters of interest θ can be obtained in the same way as in the random
sample case, this is

θ̂SBEU = arg min
θ
Qn(θ) (18)

where

Qn(θ) = m̂(θ)ᵀΣ̂(θ)−1m̂(θ), (19)

and

Σ̂(θ) = bd
∑
κ

(mκ(θ)− m̂(θ))(mκ(θ)− m̂(θ))ᵀ/N (20)

where m̂(θ) =
∑

κmκ(θ)/N . In the following section we give a consistency and asymptotic
normality result for the estimator in (18).
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5 Asymptotic Results

We require the following assumptions:

C1 The true parameter θ0 is an interior point of the compact set Θ and m̂(θ) is twice continuously
differentiable in a neighbourhood of θ0 ∈ Θ.

C2 E[‖∇`mκ(θ)‖2+η] < ∞, where ∇` is the `-th derivative of mκ(·) with respect to θ with ` =
0, 1, 2 and η > 0; supθ∈Θ ‖∇`m̂(θ)−∇`m(θ)‖ →p 0, ` = 0, 1, where ∇`m(θ) = E[∇`mκ(θ)];

∇m(θ0) is full column rank; Σ̂(θ0) →p Σ(θ0), a positive definite matrix; b−1 + b2d

n → 0 as
n→∞.

C3 (CLT):
√
nm̂(θ0)→d N(0,Σ(θ0)).

Some comments are in order: the mixing conditions are implicitly defined on the type of sets Rn as
defined in Section 2, and we refer the reader to Nordman & Caragea (2008) and Jenish & Prucha
(2009) for more details.

Let us define Q(θ) = m(θ)ᵀΣ(θ)−1m(θ) and state the following theorems.

Theorem 1 Assume that C1 to C3 hold and that

θ0 = arg min
θ∈Θ

Q(θ)

is unique. Then, θ̂ →p θ0 and
√
n(θ̂ − θ0)→d N(0,Ω(θ0)).

Theorem 2 Assume that C1 and C2 hold. Then, Σ̂(θ̂)→p Σ(θ0).

Proofs are deferred to the appendix.

6 Simulations

The aim of this section is to compare the PL estimator with the estimator proposed in Section
4 from statistical and computational point of view. In order to do so, we work under two spatial
sampling schemes:

A. a regular grid on [−15, 15]2 with unit spacing (i.e. n = 961 location sites);
B. an irregular grid, namely n = 480.5×2λ location sites uniformly distributed on [−15, 15]2 with

λ = 1 (i.e. n = 961 location sites).

Under these two spatial settings, we perform 1000 simulations of a binary spatial random field
Y (s) generated by thresholding a latent Gaussian field Z(s), with a given mean µ and a correlation
function ρ(·;α) of the exponential type, i.e.

corr (Z(s), Z(s′)) = ρ(‖s− s′‖;α) = exp

(
−3
‖s− s′‖

α

)
. (21)

The correlation function is parameterized in such a way that α corresponds to the practical
range of ρ. The latent Gaussian field Z(s) was simulated through Cholesky decomposition. Note
that we assume σ2 = 1 and τ2 = 0. The mean µ determines the marginal probability of success
(denoted p in Section 3) and the scale parameter α has a direct impact on the joint probabilities of
success (denoted p11). We combine two scenarios corresponding to increasing marginal probability
of success given by the mean parameter µ and increasing spatial dependence corresponding to
different values of the scale parameter α. We consider the following combinations of parameters:

1. let µ = −1, 0, 1, corresponding to marginal probabilities of success of approximately 0.16, 0.50,
and 0.84 respectively with α = 3;

2. let µ = −1, 0, 1, corresponding to marginal probabilities of success of approximately 0.16, 0.50,
and 0.84 respectively with α = 5.
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For each scenario we estimate the parameters µ and α with PL as in Equation (1) with lij as
defined in Equation (13), using cutoff weights wij = 1 whenever ‖si − sj‖ ≤ d, and 0 otherwise.
When d = 1 we consider the weighted version of PL. On the other hand, when d = +∞ we take its
unweighted version. The choice of compactly supported weights leads to computational benefits
and may improve the statistical efficiency of the PL estimator for the covariance parameters as
shown, for example, in Bevilacqua et al. (2012) in the Gaussian case.

We estimate µ and α with SBEU using the same weights. The choice of the block length in
the SBEU estimation method can obviously affect the efficiency of the estimator. Following Lee &
Lahiri (2002) we choose the spatial blocks by considering both overlapping and non overlapping
translates of the set [C

√
γ,C
√
γ]2 where C is a positive constant. This choice comes from Sherman

(1996), who shows that the dimension of the optimal block should be proportional to the square
root of γ. We choose C = 0.3651484, 0.7302967, 1.460593. This is equivalent to choose square blocks
of length respectively b = 2, 4 and 8. In the literature, the overlapping case has been shown to have
a better behavior in terms of statistical efficiency (see Lahiri (1999) for some results about the
block bootstrap). Note that when we apply the blockwise scheme a constant ` must be specified.
The parameter ` governs the degree of overlapping of the blocks along the field. A possible choice
is ` = bp where 0 < p ≤ 1. Figure 1 shows how overlapping and non overlapping blocking is
performed in practice when b = 4 under scenarios A and B and fixing p = 0.25 that is ` = 1. Note
that when p = 1 we are considering the non overlapping case.

Tables 1 to 4 report the results in terms of simulated relative efficiency with respect to the
PL. That is, the ratio between the simulated mean square error of the PL and that of the other
estimators. Table 1 and 2 show the relative efficiency under scenario A1 and A2 respectively, while
Table 3 and 4 show the relative efficiency under scenario B1 and B2.

In general, the PL estimator performs slightly better than the SBEU estimator. Note that for
each scenario we considered, the smallest block length (equal to 2) performs better with respect to
the other possible choices. When increasing the spatial dependence i.e. increasing α the simulated
MSE increases, as expected, for both estimation methods. Moreover, note that the MSE is lower
when the marginal probability of success is 0.5 (i.e. the case µ = 0) with respect to the case
µ = −1, 1. This is consistent with the results of Heagerty & Lele (1998). Comparing the fully
overlapping and the non overlapping case there is, as expected, a general improvement in terms
of the simulated MSE when using the fully overlapping setting. Nevertheless, the improvement is
not so clear when the block length is equal to 2.

Finally, in order to compare the computational performance of the PL and SBEU estimation
methods we consider the scenario B with an increasing λ = 1, . . . , 6. That is, we are considering
n = 961, 1922, . . . , 30752 locations sites in the unit square. In table 5, for each n, we report the
ratio between the time needed to evaluate the PL function and times needed for the other methods
specifically weighted PL and SBEU with b = 2, 4, 8 in its weighted and unweighted version and
using overlapping and non overlapping blocks. The time, in seconds, is obtained considering the
elapsed time of the R function system.time(). As expected PL in its weighted version performs
better then PL (approximately 46 times much faster when n = 30752). Overall SBEU in its non
overlapping version is much faster then the overlapping version as expected. Moreover the SBEU
in its weighted version is faster than the unweighted version. The best performance is obtained
with SBEU in its overlapping and non overlapping version. For instance with b = 2, d = 1, and
considering the non overlapping case the time needed to evaluate the SBEU function is 255 times
faster then the PL and 5 times faster then the weighted PL. In general, the computational cost
associated to PL is of order O(n2), where n is the number of location sites. Suppose that the n
observations are divided into N blocks with associated blocklenghth b. The order of computation
of each block is O(b2d). Therefore, the order of computation of the SBEU estimator is of order
O(b2dN). We assume that b2/γ → 0, which implies that b2d = o(n) (see Nordman & Caragea
(2008)). Hence, if N = O(n), the order of computation of the SBEU estimator is of order o(n2).
This suggests that the SBEU estimator enjoys some computational advantage over the PL estim-
ator both in the weighted and case. Thus, although we notice a small loss of statistical efficiency
in the simulations, this may be balanced by the computational gains described above.
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d = 1 d = +∞
PL SBEU PL SBEU

b = 2 b = 4 b = 8 b = 2 b = 4 b = 8
µ = −1 µ 0.980 0.909 0.830 0.686 1.000 0.912 0.837 0.693

(0.947) (0.839) (0.638) (0.916) (0.797) (0.624)
α 1.084 1.019 0.909 0.763 1.000 1.157 1.009 0.814

(1.033) (0.867) (0.654) (1.141) (0.893) (0.622)
µ = 0 µ 0.977 0.903 0.825 0.684 1.000 0.906 0.831 0.692

(0.953) (0.831) (0.623) (0.937) (0.798) (0.615)
α 1.460 1.369 1.251 1.054 1.000 1.369 1.117 0.855

(1.334) (1.184) (0.873) (1.325) (1.013) (0.686)
µ = 1 µ 0.978 0.904 0.821 0.677 1.000 0.910 0.830 0.691

(0.935) (0.824) (0.604) (0.888) (0.784) (0.582)
α 1.207 1.128 1.034 0.850 1.000 1.216 1.061 0.862

(1.143) (0.990) (0.697) (1.181) (0.930) (0.692)

Table 1: Simulated relative efficiency (with respect to the PL) of SBEU estimator and weighted
PL when α = 3 under the setting A1. For SBEU estimator relative efficiency is presented for
different values of the block length and for its overlapping and non overlapping (in parentheses)
version.

d = 1 d = +∞
PL SBEU PL SBEU

b = 2 b = 4 b = 8 b = 2 b = 4 b = 8
µ = −1 µ 0.982 0.912 0.836 0.697 1.000 0.911 0.839 0.701

(0.953) (0.860) (0.658) (0.936) (0.849) (0.654)
α 1.299 1.220 1.135 0.969 1.000 1.187 1.034 0.855

(1.253) (1.098) (0.819) (1.189) (0.903) (0.642)
µ = 0 µ 0.977 0.905 0.828 0.685 1.000 0.907 0.834 0.693

(0.952) (0.846) (0.640) (0.945) (0.832) (0.646)
α 1.516 1.425 1.230 1.059 1.000 1.418 1.148 0.897

(1.446) (1.247) (0.886) (1.417) (1.055) (0.675)
µ = 1 µ 0.978 0.905 0.818 0.669 1.000 0.907 0.821 0.675

(0.947) (0.838) (0.615) (0.928) (0.825) (0.614)
α 1.379 1.269 1.165 0.991 1.000 1.256 1.081 0.918

(1.332) (1.150) (0.819) (1.255) (0.972) (0.703)

Table 2: Simulated relative efficiency (with respect to the PL) of SBEU estimator and weighted
PL when α = 5 under the setting A2. For SBEU estimator relative efficiency is presented for
different values of the block length and for its overlapping and non overlapping (in parentheses)
version.

d = 1 d = +∞
PL SBEU PL SBEU

b = 2 b = 4 b = 8 b = 2 b = 4 b = 8
µ = −1 µ 0.776 0.470 0.620 0.525 1.000 0.557 0.752 0.639

(0.354) (0.671) (0.478) (0.428) (0.829) (0.610)
α 0.838 0.463 0.668 0.573 1.000 0.684 1.035 0.852

(0.241) (0.666) (0.489) (0.290) (0.778) (0.591)
µ = 0 µ 0.792 0.494 0.638 0.559 1.000 0.579 0.768 0.678

(0.395) (0.676) (0.499) (0.458) (0.831) (0.620)
α 1.047 0.562 0.824 0.716 1.000 0.729 1.052 0.853

(0.348) (0.802) (0.605) (0.396) (0.891) (0.648)
µ = 1 µ 0.750 0.453 0.625 0.565 1.000 0.537 0.783 0.705

(0.368) (0.651) (0.492) (0.425) (0.834) (0.650)
α 0.752 0.432 0.671 0.593 1.000 0.578 0.953 0.870

(0.266) (0.619) (0.462) (0.300) (0.728) (0.604)

Table 3: Simulated relative efficiency (with respect to the PL) of SBEU estimator and weighted
PL when α = 3 under the setting B1. For SBEU estimator relative efficiency is presented for
different values of the block length and for its overlapping and non overlapping (in parentheses)
version.



EU 9

Fig. 1: Non overlapping (left) and overlapping (right) blocks for scenarios A (top) and B (bottom)
when b = 4.

7 Data Example: Cancer mortality map

We consider the dataset on cancer mortality rates for the United States of Sherman & Carlstein
(1994) and re-analyzed by Sherman et al. (2006) and Nordman (2008). The data describes a cancer
mortality map shown in Figure 2, constructed using mortality rates from liver and gallbladder
cancer in white males during 1950-1959. The sampling region contains 2298 sites on a portion
of the integer grid (0, 66] × (0, 58] ∩ Z2. Here for a given location site s, Y (s) = 0 indicates low
mortality rate

Sherman et al. (2006) fit an autologistic model employing maximum conditional composite
likelihood while Nordman (2008) employs a blockwise EL estimation method. In some sense, our
approach combines the previous two approaches since we are considering a specific type of compos-
ite likelihood (pairwise) and we are considering blocks in the Euclidean likelihood framework. In
order to investigate about the spatial dependence, we consider the lorelogram function (Heagerty
& Zeger, 1996). The latter has been introduced in the context of longitudinal data for describing
the dependence of binary responses. In this context, the lorelogram plays the same role of the
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d = 1 d = +∞
PL SBEU PL SBEU

b = 2 b = 4 b = 8 b = 2 b = 4 b = 8
µ = −1 µ 0.839 0.575 0.675 0.572 1.000 0.645 0.767 0.650

(0.472) (0.738) (0.535) (0.541) (0.850) (0.633)
α 0.826 0.452 0.672 0.575 1.000 0.647 0.989 0.858

(0.225) (0.641) (0.467) (0.315) (0.761) (0.636)
µ = 0 µ 0.866 0.618 0.702 0.595 1.000 0.678 0.774 0.658

(0.551) (0.772) (0.574) (0.605) (0.856) (0.644)
α 1.064 0.602 0.855 0.763 1.000 0.787 1.067 0.878

(0.363) (0.811) (0.630) (0.414) (0.895) (0.633)
µ = 1 µ 0.828 0.567 0.684 0.597 1.000 0.628 0.779 0.681

(0.506) (0.742) (0.560) (0.546) (0.847) (0.664)
α 0.780 0.434 0.677 0.609 1.000 0.568 0.933 0.904

(0.238) (0.656) (0.516) 0.319) (0.749) (0.601)

Table 4: Simulated relative efficiency (with respect to the PL) of SBEU estimator and weighted
PL when α = 5 under the setting B2. For SBEU estimator relative efficiency is presented for
different values of the block length and for its overlapping and non overlapping (in parentheses)
version.

d = 1 d = +∞
PL SBEU PL SBEU

b = 2 b = 4 b = 8 b = 2 b = 4 b = 8
n = 961 36.60 10.45 12.33 14.83 1.00 8.01 2.91 1.26

(43.91) (121.94) (121.95) (84.45) (40.66) (13.89)
n = 1922 44.94 11.11 12.72 15.58 1.00 7.46 3.19 1.20

(111.89) (150.82) (183.48) (102.98) (38.05) (15.41)
n = 3844 45.95 12.21 12.62 14.80 1.00 7.87 3.07 1.16

(151.28) (171.23) (190.47) (119.33) (39.79) (17.24)
n = 7688 45.41 14.33 12.94 16.31 1.00 8.84 3.21 1.23

(206.61) (176.36) (196.46) (132.80) (40.95) (17.24)
n = 15376 45.62 15.48 14.45 16.04 1.00 9.17 3.23 1.11

(242.71) (175.13) (195.31) (144.09) (40.22) (15.09)
n = 30752 46.27 16.23 13.72 15.35 1.00 9.34 3.20 1.12

(255.10) (188.67) (208.33) (144.50) (42.35) (15.14)

Table 5: Ratio between the time needed to evaluate the PL and the other methods when increasing
n under scenario B1. For SBEU estimator the ratio is presented for different values of the block
length and for its overlapping and non overlapping (in parentheses) version.

variogram in the continuous case (see for instance Kovitz & Christakos (2004)) Specifically, the
lorelogram function is defined as the logarithm of the pairwise odds ratio,

π = log

(
p11p00
p10p01

)
, (22)

where pab, a, b ∈ {0, 1} are as described in (11). For binary data, it provides a better measure of
dependence than the covariance function, it is easy to interpret and its upper and lower bounds
do not depend on the mean.

We assume the data are a realization from a binary random field generated thresholding a
Gaussian random field with mean µ and correlation model as in (21). That is, we specify the
marginal probability of success p as in (10) and the joint probability of success p11 as in (12). We
estimate the parameters of the underlying Gaussian field (µ, α)ᵀ with weighed PL and weighted
SBEU using b = 2, 4, 8. The weights have been chosen as wij = 1 whenever ‖si − sj‖ ≤ 10, and 0
otherwise.

Table 6 reports the estimates of the underlying random field parameters with the weighted
PL method and the non overlapping weighted SBEU method. Note that the estimates are similar
and that the estimated marginal probability of success is approximately 0.27 for all the estimation
methods. The latter being very close to the empirical probability of success 0.2693647. Figure 2
shows the comparison between the empirical lorelogram and the estimated lorelogram using the
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Fig. 2: Cancer mortality map data on the left and empirical lorelogram vs fitted lorelogram using
not overlapping SBEU estimates with b = 4 on the right.

weighted SBEU with b = 4 and highlights the weakness of spatial dependence for cancer mortality
data.

α µ
WPL 0.672 -0.614

SBEU(2) 0.650 -0.603
SBEU(4) 0.703 -0.596
SBEU(8) 0.695 -0.612

Table 6: PL and SBEU estimates for the Cancer mortality map data .

8 Concluding remarks

In this paper we propose a blockwise EU method for the estimation of a spatial binary field
obtained by thresholding a latent Gaussian random field using moment conditions derived from
the score of the PL.

The simulation results suggest that the EU-based estimator may be slightly worse in terms of
statistical efficiency. However, we observe that the SBEU estimator provides considerable gains
in terms of computational efficiency when compared with the PL estimator, especially in its non
overlapping version. In this sense the choice of the blocks can be driven by computational consid-
erations.

Moreover, like other estimation methods based on blocks, it can be parallelized in order to
obtain further computational benefits by exploiting the approach proposed in Eidsvik et al. (2013).
Finally, we outline that the proposed method can be extended to other types of data and to the
space time setting using spatio-temporal blocks (Kleiber & Porcu (2014); Martinez-Ruiz et al.
(2010); Ruiz-Medina et al. (2008); Yu et al. (2007)). In addition to that, differently from standard
likelihood methods, it is well-known that the PL likelihood ratio test does not have a standard
limiting distribution (Lunardon et al. (2012); Pace et al. (2011)). On the other hand, it could be
shown that EU-based tests are chi square distributed. To our knowledge the relative finite sample
properties of those tests are not known. Those are possible topics for future research.
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Appendix

The appendix collects the proofs of the asymptotic results. First of all, we introduce the following
notation: ∇θ and ∇λ are the first derivative operators for θ and λ respectively, while ∇θθ, ∇λλ

and ∇θλ indicate second and cross derivatives and are defined accordingly. Similarly, for a certain
function R̂(θ,λ) defined below, R̂θ(θ,λ) is its first derivative with respect to θ. Derivatives with
respect to λ, second derivatives and cross derivatives are defined in a similar manner. In addition
to that, we use

Σ(θ) =
bd

N

∑
κ

mκ(θ)mκ(θ)ᵀ

instead of the expression in Equation (20). As noticed in Newey & Smith (2004) this choice does
not change the estimator but it simplifies the asymptotic analysis.

Proof (Proof of Theorem 1) We have to show that, for some δ > 0, P (‖θ̂ − θ0‖ > δ) → 0 as
n→∞. By continuity of Q(θ) and the assumption that θ0 is the unique minimizer, we have that,

for some ε > 0, {‖θ̂ − θ0‖ > δ} =⇒ { | Q(θ̂) − Q(θ0) | > ε}. This is, the latter set contains

the former. Hence, P (‖θ̂ − θ0‖ > δ) ≤ P ( | Q(θ̂) − Q(θ0) | > ε). By assumptions C1-C2 and
arguments similar to those in Theorem 2 we have the following uniform convergence condition

sup
θ∈Θ

| Q̂n(θ)−Q(θ) | →p 0. (23)

Therefore,

ε < | Q(θ̂)−Q(θ0) | = | Q(θ̂)− Q̂n(θ0) + Q̂n(θ0)−Q(θ0) |

≤ 2 sup
θ∈Θ

| Q̂n(θ)−Q(θ) | →p 0

where the latter inequality follows from the triangular inequality and the uniform convergence
condition in (23). This implies P (‖θ̂ − θ0‖ > δ) ≤ P ( | Q(θ̂) − Q(θ0) | > ε) → 0 as n → ∞.

Hence, θ̂ →p θ0. Before showing asymptotic normality we show that the estimate of the Lagrange

multiplier λ̂ converges to zero in probability. Similarly to (7) we have that

λ̂

bd
= Σ̂(θ̂)−1m̂(θ̂). (24)

By a mean value argument, assumptions C1-C2, results in Theorem 2 and continuous mapping
theorem we get

λ̂

bd
→p 0

In analogy with (5) let us define

πκ(θ,λ) =
1

N

(
1− λᵀ(mκ(θ)− m̂(θ))

)
and

R̂(θ,λ) = − 1

2N

∑
κ

(Nπκ(θ,λ)− 1)2.
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Then by simple calculations we can write

R̂(θ,λ) = −λᵀm̂(θ) +
1

2bdn
λᵀΣ̂(θ)ᵀλ.

The first order conditions of R̂(θ̂, λ̂) with respect to θ and λ are

0 = R̂θ(θ̂, λ̂) = −∇m̂(θ̂)λ̂+
λᵀ

Nbdn

∑
κ

mκ(θ̂)∇mκ(θ̂)λ̂ (25)

0 = R̂λ(θ̂, λ̂) = −m̂(θ̂) +
1

bd
Σ̂(θ̂)λ̂. (26)

Let us now take a mean value expansion of the first order conditions (25) and (26) about the true
values (θᵀ,λᵀ)ᵀ = (θᵀ0 ,0

ᵀ)ᵀ

0 = R̂θ(θ̂, λ̂) = R̂θ(θ0,0) + R̂θλ(θ̇, λ̇)λ̂+ R̂θθ(θ̇, λ̇)(θ̂ − θ0) (27)

= R̂θλ(θ̇, λ̇)

√
n

bd
λ̂+

1

bd
R̂θθ(θ̇, λ̇)

√
n(θ̂ − θ0)

0 = R̂λ(θ̂, λ̂) = R̂λ(θ0,0) + R̂λλ(θ̇, λ̇)λ̂+ R̂λθ(θ̇, λ̇)(θ̂ − θ0) (28)

=
√
nR̂λ(θ0,0) + bdR̂λλ(θ̇, λ̇)

√
n

bd
λ̂+ R̂λθ(θ̇, λ̇)

√
n(θ̂ − θ0).

More compactly,(
0√

nR̂λ(θ0,0)

)
= −

(
1
bd
R̂θθ(θ̇, λ̇) R̂θλ(θ̇, λ̇)

R̂λθ(θ̇, λ̇) bdR̂λλ(θ̇, λ̇)

)(√
n(θ̂ − θ0)√

n
bd
λ̂

)
.

By the UWLLN 1
bd
R̂θθ(θ̇, λ̇)→p 0, bdR̂λλ(θ̇, λ̇)→p Σ(θ0) and R̂λθ(θ̇, λ̇)→p −∇θm(θ0). Hence,(√

n(θ̂ − θ0)√
n
bd
λ̂

)
= −

(
−Ω(θ0) Ω(θ0)∇θm(θ0)ᵀΣ(θ0)−1

Σ(θ0)−1∇θm(θ0)Ω(θ0) Λ(θ0)

)(
0√

nm̂(θ0)

)
+ op(1)

whereΩ(θ0) = (∇θm(θ0)ᵀΣ(θ0)−1∇θm(θ0))−1 andΛ(θ0) = Σ(θ0)−1−Σ(θ0)−1∇θm(θ0)Ω(θ0)∇θm(θ0)ᵀΣ(θ0)−1.
The result follows from an application of the CLT and the continuous mapping theorem.

Proof (Proof of Theorem 2) Assume θ̂ consistent and define the following mean value expansion
around θ0

Σ̂(θ̂) = Σ̂(θ0) +∇θΣ̂(θ̇)(θ̂ − θ0).

By rearranging, taking the Euclidean norm and the Cauchy-Schwarz inequality we get

‖Σ̂(θ̂)− Σ̂(θ0)‖ ≤ 2bd

N

∥∥∥∑
κ

mκ(θ̇)
∑
κ

∇mκ(θ̇)
∥∥∥‖θ̂ − θ0‖

≤ 2bd

N

(∑
κ

sup
θ∈Θ
‖mκ(θ̇)‖2

) 1
2
(∑

κ

sup
θ∈Θ
‖∇mκ(θ̇)‖2

) 1
2 ‖θ̂ − θ0‖

= op(1).

The last line follows from the consistency of θ̂ and from the fact that bd = o(
√
n). Thus,

‖Σ̂(θ̂)−Σ(θ0)‖ ≤ ‖Σ̂(θ̂)− Σ̂(θ0) + Σ̂(θ0)−Σ(θ0)‖

≤ ‖Σ̂(θ̂)− Σ̂(θ0)‖+ ‖Σ̂(θ0)−Σ(θ0)‖

≤ op(1) + sup
θ∈Θ
‖Σ̂(θ0)−Σ(θ0)‖

≤ op(1).

The result follows from the application of the triangular inequality and UWLLN.
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