Recent work has considered a class of cellular neural networks (CNNs) where each cell contains an ideal capacitor and an ideal flux-controlled memristor. One main feature is that during the analog computation the memristor is assumed to be a dynamic element, hence each cell is second-order with state variables given by the capacitor voltage and the memristor flux. Such CNNs, named dynamic memristor (DM)-CNNs, were proved to be convergent when a symmetry condition for the cell interconnections is satisfied. The goal of this paper is to investigate convergence and multistability of DM-CNNs in the general case of nonsymmetric interconnections. The main result is that convergence holds when there are (possibly) nonsymmetric, non-negative interconnections between cells and an irreducibility assumption is satisfied. This result appears to be similar to the classic convergence result for standard (S)-CNNs with positive cell-linking templates. Yet, due to the presence of DMs, a DM-CNN displays some basically different and peculiar dynamical properties with respect to S-CNNs. One key difference is that the DM-CNN processing is based on the time evolution of memristor fluxes instead of capacitor voltages as it happens for S-CNNs. Moreover, when a steady state is reached, all voltages and currents, and hence power consumption of a DM-CNN vanish. This notwithstanding the memristors are able to store in a nonvolatile way the result of the processing. Voltages, currents and power instead do not vanish when an S-CNN reaches a steady state.
Di Marco, M., Forti, M., Pancioni, L. (2017). Convergence and Multistability of Nonsymmetric Cellular Neural Networks With Memristors. IEEE TRANSACTIONS ON CYBERNETICS, 47(10), 2970-2983 [10.1109/TCYB.2016.2586115].
Convergence and Multistability of Nonsymmetric Cellular Neural Networks With Memristors
Di Marco, Mauro;Forti, Mauro;Pancioni, Luca
2017-01-01
Abstract
Recent work has considered a class of cellular neural networks (CNNs) where each cell contains an ideal capacitor and an ideal flux-controlled memristor. One main feature is that during the analog computation the memristor is assumed to be a dynamic element, hence each cell is second-order with state variables given by the capacitor voltage and the memristor flux. Such CNNs, named dynamic memristor (DM)-CNNs, were proved to be convergent when a symmetry condition for the cell interconnections is satisfied. The goal of this paper is to investigate convergence and multistability of DM-CNNs in the general case of nonsymmetric interconnections. The main result is that convergence holds when there are (possibly) nonsymmetric, non-negative interconnections between cells and an irreducibility assumption is satisfied. This result appears to be similar to the classic convergence result for standard (S)-CNNs with positive cell-linking templates. Yet, due to the presence of DMs, a DM-CNN displays some basically different and peculiar dynamical properties with respect to S-CNNs. One key difference is that the DM-CNN processing is based on the time evolution of memristor fluxes instead of capacitor voltages as it happens for S-CNNs. Moreover, when a steady state is reached, all voltages and currents, and hence power consumption of a DM-CNN vanish. This notwithstanding the memristors are able to store in a nonvolatile way the result of the processing. Voltages, currents and power instead do not vanish when an S-CNN reaches a steady state.File | Dimensione | Formato | |
---|---|---|---|
07516733.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/998689