Prostaglandin E-2 (PGE-2) promotes tumor angiogenesis via paracrine secretion of pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF). Since miRNAs regulate several cell processes, including angiogenesis, we sought to determine whether they would influence PGE-2-induced VEGF. We compared DU145 and PC3 prostate cancer cells bearing the mPGES-1 enzyme (mPGES-1+/+) and producing PGE-2, with those in which the enzyme was silenced or deleted (mPGES-1-/-). We demonstrated that mPGES-1/PGE-2 signaling decreased Dicer expression and miRNA biogenesis. Genome-wide sequencing of miRNAs revealed that miR-15a and miR-186, associated with expression of VEGF and hypoxia inducible factor-1α (HIF-1α), were down-regulated in mPGES-1+/+ cells. As a consequence, mPGES-1+/+ tumor cells expressed high levels of VEGF and HIF-1α, induced endothelial cells activation and formed highly vascularized tumors. Mir-186 mimic inhibited VEGF expression in mPGES-1+/+ tumor xenografts and reduced tumor growth. In human prostate cancer specimens, mPGES-1 was over-expressed in tumors with high Gleason score, elevated expression of VEGF and HIF-1α, high microvessel density and decreased expression of Dicer, miR15a and miR-186. Thus, clear evidence for regulating miRNA processing and VEGF output by intrinsic PGE-2 production provides a means to distinguish between aggressive and indolent prostate tumors and suggests a potential target for controlling tumor progression.

Terzuoli, E., Donnini, S., Finetti, F., Nesi, G., Villari, D., Hanaka, H., et al. (2016). Linking microsomal prostaglandin E Synthase-1/PGE-2 pathway with miR-15a and -186 expression: Novel mechanism of VEGF modulation in prostate cancer. ONCOTARGET, 7(28), 44350-44364 [10.18632/oncotarget.10051].

Linking microsomal prostaglandin E Synthase-1/PGE-2 pathway with miR-15a and -186 expression: Novel mechanism of VEGF modulation in prostate cancer

TERZUOLI, ERIKA;DONNINI, SANDRA;FINETTI, FEDERICA;ZICHE, MARINA
2016-01-01

Abstract

Prostaglandin E-2 (PGE-2) promotes tumor angiogenesis via paracrine secretion of pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF). Since miRNAs regulate several cell processes, including angiogenesis, we sought to determine whether they would influence PGE-2-induced VEGF. We compared DU145 and PC3 prostate cancer cells bearing the mPGES-1 enzyme (mPGES-1+/+) and producing PGE-2, with those in which the enzyme was silenced or deleted (mPGES-1-/-). We demonstrated that mPGES-1/PGE-2 signaling decreased Dicer expression and miRNA biogenesis. Genome-wide sequencing of miRNAs revealed that miR-15a and miR-186, associated with expression of VEGF and hypoxia inducible factor-1α (HIF-1α), were down-regulated in mPGES-1+/+ cells. As a consequence, mPGES-1+/+ tumor cells expressed high levels of VEGF and HIF-1α, induced endothelial cells activation and formed highly vascularized tumors. Mir-186 mimic inhibited VEGF expression in mPGES-1+/+ tumor xenografts and reduced tumor growth. In human prostate cancer specimens, mPGES-1 was over-expressed in tumors with high Gleason score, elevated expression of VEGF and HIF-1α, high microvessel density and decreased expression of Dicer, miR15a and miR-186. Thus, clear evidence for regulating miRNA processing and VEGF output by intrinsic PGE-2 production provides a means to distinguish between aggressive and indolent prostate tumors and suggests a potential target for controlling tumor progression.
2016
Terzuoli, E., Donnini, S., Finetti, F., Nesi, G., Villari, D., Hanaka, H., et al. (2016). Linking microsomal prostaglandin E Synthase-1/PGE-2 pathway with miR-15a and -186 expression: Novel mechanism of VEGF modulation in prostate cancer. ONCOTARGET, 7(28), 44350-44364 [10.18632/oncotarget.10051].
File in questo prodotto:
File Dimensione Formato  
Oncotarget Terzuoli 2016.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 9.97 MB
Formato Adobe PDF
9.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/994948