Let A = (aij) be a symmetric non-negative integer 2k×2k matrix. A is homogeneous if aij + akl = ail + akj for any choice of the four indexes. Let A be a homogeneous matrix and let F be a general form in C[x1,...xn] with 2 deg(F) = trace(A). We look for the least integer, s(A), so that F = pfaff(M1) +...+ pfaff(Ms(A)), where the Mi = (Fi lm) are 2k × 2k skew-symmetric matrices of forms with degree matrix A. We consider this problem for n = 4 and we prove that s(A) ≤ k for all A.

Chiantini, L. (2015). Expressing forms as a sum of pfaffians. RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE, 47, 45-57 [10.13137/0049-4704/11218].

Expressing forms as a sum of pfaffians

Chiantini, Luca
2015-01-01

Abstract

Let A = (aij) be a symmetric non-negative integer 2k×2k matrix. A is homogeneous if aij + akl = ail + akj for any choice of the four indexes. Let A be a homogeneous matrix and let F be a general form in C[x1,...xn] with 2 deg(F) = trace(A). We look for the least integer, s(A), so that F = pfaff(M1) +...+ pfaff(Ms(A)), where the Mi = (Fi lm) are 2k × 2k skew-symmetric matrices of forms with degree matrix A. We consider this problem for n = 4 and we prove that s(A) ≤ k for all A.
2015
Chiantini, L. (2015). Expressing forms as a sum of pfaffians. RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE, 47, 45-57 [10.13137/0049-4704/11218].
File in questo prodotto:
File Dimensione Formato  
RIMUT_47_05_Chiantini.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 270.42 kB
Formato Adobe PDF
270.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/991365