A ring of N = 2M identical neuron cells with piecewise linear and saturated bidirectional coupling nonlinearities is considered. The rotating wave under investigation exists for 'most' values of the coupling parameters alpha > 0 and vertical bar beta vertical bar <= alpha. The dominant Floquet multiplier is unstable and converges exponentially to 1 in the number of cells. The remaining 2M - 2 nontrivial Floquet multipliers converge exponentially to 0. A heteroclinic bifurcation curve and also the heteroclinic orbit connections are described by explicit formulas. The entire work was motivated by electrical circuit experiments.

Di Marco, M., Forti, M., Garay, B.M., Koller, M., Pancioni, L. (2016). Floquet multipliers of a metastable rotating wave in a Chua-Yang ring network. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 434, 798-836 [10.1016/j.jmaa.2015.08.072].

Floquet multipliers of a metastable rotating wave in a Chua-Yang ring network

Di Marco, Mauro;Forti, Mauro;Pancioni, Luca
2016-01-01

Abstract

A ring of N = 2M identical neuron cells with piecewise linear and saturated bidirectional coupling nonlinearities is considered. The rotating wave under investigation exists for 'most' values of the coupling parameters alpha > 0 and vertical bar beta vertical bar <= alpha. The dominant Floquet multiplier is unstable and converges exponentially to 1 in the number of cells. The remaining 2M - 2 nontrivial Floquet multipliers converge exponentially to 0. A heteroclinic bifurcation curve and also the heteroclinic orbit connections are described by explicit formulas. The entire work was motivated by electrical circuit experiments.
2016
Di Marco, M., Forti, M., Garay, B.M., Koller, M., Pancioni, L. (2016). Floquet multipliers of a metastable rotating wave in a Chua-Yang ring network. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 434, 798-836 [10.1016/j.jmaa.2015.08.072].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X15008100-main.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 770.78 kB
Formato Adobe PDF
770.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/982503