Objectives: To investigate convergence of endoplasmic reticulum stress pathways and enhanced reactive oxygen species (ROS) production, due to intracellular retention of mutant tumour necrosis factor receptor 1(TNFR1), as a disease mechanism in TNFR-associated periodic syndrome (TRAPS). Methods: Peripheral blood mononuclear cells from patients with TRAPS (n=16) and healthy controls (HC) (n=22) were studied alongside HEK293T cells expressing wild type-TNFR1 or TRAPS-associated mutations. Unfolded protein response (UPR)-associated proteins (protein kinase-like endoplasmic reticulum kinase, PERK), phosphorylated-PERK (p-PERK), phosphorylated inositolrequiring enzyme 1α (p-IRE1α) and spliced X-box binding protein 1 (sXBP1)) were measured by flow cytometry. XBP1 splicing and UPR-associated transcript expression were assessed by reverse transcription PCR/quantitative real-time PCR. ROS levels were measured using CM-H2DCFDA and MitoSOX Red in patients' monocytes or HEK293T cells by flow cytometry. Results: Mutant TNFR1-expressing HEK293T cells had increased TNFR1 expression associated with intracellular aggregation. TRAPS patients had increased sXBP1 transcripts (p<0.01) compared with HC. Raised p-PERK protein was seen, indicative of an UPR, but other UPR-associated transcripts were normal. Increased ROS levels were observed in TRAPS monocytes compared with HCs (p<0.02); these increased further upon IL-6 stimulation (p<0.01). Lipopolysaccharide-stimulated peripheral blood mononuclear cells of patients with TRAPS, but not HCs, demonstrated increased sXBP1 levels (p<0.01), which were reduced by antioxidant treatment (p<0.05). Conclusions: Patients with TRAPS have evidence of increased sXBP1 and PERK expression but without other signs of classical UPR, and also with high ROS generation that may contribute to the pro-inflammatory state associated with TRAPS. The authors propose a non-traditional XBP1 pathway with enhanced sXBP1 as a novel disease-contributing mechanism in TRAPS.

Dickie, L.J., Aziz, A.M., Savic, S., Lucherini, O.M., Cantarini, L., Geiler, J., et al. (2012). Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. ANNALS OF THE RHEUMATIC DISEASES, 71(12), 2035-2043 [10.1136/annrheumdis-2011-201197].

Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome

LUCHERINI, ORSO MARIA;CANTARINI, LUCA;
2012-01-01

Abstract

Objectives: To investigate convergence of endoplasmic reticulum stress pathways and enhanced reactive oxygen species (ROS) production, due to intracellular retention of mutant tumour necrosis factor receptor 1(TNFR1), as a disease mechanism in TNFR-associated periodic syndrome (TRAPS). Methods: Peripheral blood mononuclear cells from patients with TRAPS (n=16) and healthy controls (HC) (n=22) were studied alongside HEK293T cells expressing wild type-TNFR1 or TRAPS-associated mutations. Unfolded protein response (UPR)-associated proteins (protein kinase-like endoplasmic reticulum kinase, PERK), phosphorylated-PERK (p-PERK), phosphorylated inositolrequiring enzyme 1α (p-IRE1α) and spliced X-box binding protein 1 (sXBP1)) were measured by flow cytometry. XBP1 splicing and UPR-associated transcript expression were assessed by reverse transcription PCR/quantitative real-time PCR. ROS levels were measured using CM-H2DCFDA and MitoSOX Red in patients' monocytes or HEK293T cells by flow cytometry. Results: Mutant TNFR1-expressing HEK293T cells had increased TNFR1 expression associated with intracellular aggregation. TRAPS patients had increased sXBP1 transcripts (p<0.01) compared with HC. Raised p-PERK protein was seen, indicative of an UPR, but other UPR-associated transcripts were normal. Increased ROS levels were observed in TRAPS monocytes compared with HCs (p<0.02); these increased further upon IL-6 stimulation (p<0.01). Lipopolysaccharide-stimulated peripheral blood mononuclear cells of patients with TRAPS, but not HCs, demonstrated increased sXBP1 levels (p<0.01), which were reduced by antioxidant treatment (p<0.05). Conclusions: Patients with TRAPS have evidence of increased sXBP1 and PERK expression but without other signs of classical UPR, and also with high ROS generation that may contribute to the pro-inflammatory state associated with TRAPS. The authors propose a non-traditional XBP1 pathway with enhanced sXBP1 as a novel disease-contributing mechanism in TRAPS.
2012
Dickie, L.J., Aziz, A.M., Savic, S., Lucherini, O.M., Cantarini, L., Geiler, J., et al. (2012). Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. ANNALS OF THE RHEUMATIC DISEASES, 71(12), 2035-2043 [10.1136/annrheumdis-2011-201197].
File in questo prodotto:
File Dimensione Formato  
Involvement-of-Xbox-2012.pdf

non disponibili

Descrizione: Articolo
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/974823