Mcl-1 is a unique Bcl-2 family member that plays crucial roles in apoptosis. Apoptosis-unrelated functions of Mcl-1 are however emerging, further justifying its tight regulation. Here we unravel a novel mechanism of Mcl-1 regulation mediated by the haplo-insufficient tumour suppressor Beclin 1. Beclin 1 negatively modulates Mcl-1 stability in a reciprocal manner whereby depletion of one leads to the stabilization of the other. This co-regulation is independent of autophagy and of their physical interaction. Both Beclin 1 and Mcl-1 are deubiquitinated and thus stabilized by binding to a common deubiquitinase, USP9X. Beclin 1 and Mcl-1 negatively modulate the proteasomal degradation of each other through competitive displacement of USP9X. The analysis of patient-derived melanoma cells and tissue samples shows that the levels of Beclin 1 decrease, while Mcl-1 levels subsequently increase during melanoma progression in a significant inter-dependent manner. The identified inverse co-regulation of Beclin 1 and Mcl-1 represents a mechanism of functional counteraction in cancer.

Elgendy, M., Ciro, M., Abdel-Aziz, A.K., Belmonte, G., Dal Zuffo, R., Mercurio, C., et al. (2014). Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. NATURE COMMUNICATIONS, 5, 1-11 [10.1038/ncomms6637].

Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner

Belmonte, G.;Miracco, C.;
2014-01-01

Abstract

Mcl-1 is a unique Bcl-2 family member that plays crucial roles in apoptosis. Apoptosis-unrelated functions of Mcl-1 are however emerging, further justifying its tight regulation. Here we unravel a novel mechanism of Mcl-1 regulation mediated by the haplo-insufficient tumour suppressor Beclin 1. Beclin 1 negatively modulates Mcl-1 stability in a reciprocal manner whereby depletion of one leads to the stabilization of the other. This co-regulation is independent of autophagy and of their physical interaction. Both Beclin 1 and Mcl-1 are deubiquitinated and thus stabilized by binding to a common deubiquitinase, USP9X. Beclin 1 and Mcl-1 negatively modulate the proteasomal degradation of each other through competitive displacement of USP9X. The analysis of patient-derived melanoma cells and tissue samples shows that the levels of Beclin 1 decrease, while Mcl-1 levels subsequently increase during melanoma progression in a significant inter-dependent manner. The identified inverse co-regulation of Beclin 1 and Mcl-1 represents a mechanism of functional counteraction in cancer.
2014
Elgendy, M., Ciro, M., Abdel-Aziz, A.K., Belmonte, G., Dal Zuffo, R., Mercurio, C., et al. (2014). Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. NATURE COMMUNICATIONS, 5, 1-11 [10.1038/ncomms6637].
File in questo prodotto:
File Dimensione Formato  
BECL-NAT COMMUN2014.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.85 MB
Formato Adobe PDF
7.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/974283
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo