Recently, the cortical source of blink-related delta oscillations (delta BROs) in resting healthy subjects has been localized in the posterior cingulate cortex/precuneus (PCC/PCu), one of the main core-hubs of the default-mode network. This has been interpreted as the electrophysiological signature of the automatic monitoring of the surrounding environment while subjects are immersed in self-reflecting mental activities. Although delta BROs were directly correlated to the degree of consciousness impairment in patients with disorders of consciousness, they failed to differentiate vegetative state/unresponsive wakefulness syndrome (VS/UWS) from minimally conscious state (MCS). In the present study, we have extended the analysis of BROs to frequency bands other than delta in the attempt to find a biological marker that could support the differential diagnosis between VS/UWS and MCS. Four patients with VS/UWS, 5 patients with MCS, and 12 healthy matched controls (CTRL) underwent standard 19-channels EEG recordings during resting conditions. Three-second-lasting EEG epochs centred on each blink instance were submitted to time-frequency analyses in order to extract the normalized Blink-Related Synchronization/Desynchronization (nBRS/BRD) of three bands of interest (low-alpha, high-alpha and low-beta) in the time-window of 50-550 ms after the blink-peak and to estimate the corresponding cortical sources of electrical activity. VS/UWS nBRS/BRD levels of all three bands were lower than those related to both CTRL and MCS, thus enabling the differential diagnosis between MCS and VS/UWS. Furthermore, MCS showed an intermediate signal intensity on PCC/PCu between CTRL and VS/UWS and a higher signal intensity on the left temporo-parieto-occipital junction and inferior occipito-temporal regions when compared to VS/UWS. This peculiar pattern of activation leads us to hypothesize that resting MCS patients have a bottom-up driven activation of the task positive network and thus are tendentially prone to respond to environmental stimuli, even though in an almost unintentional way.
Bonfiglio, L., Piarulli, A., Olcese, U., Andre, P., Arrighi, P., Frisoli, A., et al. (2014). Spectral parameters modulation and source localization of blink-related alpha and low-beta oscillations differentiate minimally conscious state from vegetative state/unresponsive wakefulness syndrome. PLOS ONE, 9(3), 1-16 [10.1371/journal.pone.0093252].
Spectral parameters modulation and source localization of blink-related alpha and low-beta oscillations differentiate minimally conscious state from vegetative state/unresponsive wakefulness syndrome
ANDRE, PAOLO;
2014-01-01
Abstract
Recently, the cortical source of blink-related delta oscillations (delta BROs) in resting healthy subjects has been localized in the posterior cingulate cortex/precuneus (PCC/PCu), one of the main core-hubs of the default-mode network. This has been interpreted as the electrophysiological signature of the automatic monitoring of the surrounding environment while subjects are immersed in self-reflecting mental activities. Although delta BROs were directly correlated to the degree of consciousness impairment in patients with disorders of consciousness, they failed to differentiate vegetative state/unresponsive wakefulness syndrome (VS/UWS) from minimally conscious state (MCS). In the present study, we have extended the analysis of BROs to frequency bands other than delta in the attempt to find a biological marker that could support the differential diagnosis between VS/UWS and MCS. Four patients with VS/UWS, 5 patients with MCS, and 12 healthy matched controls (CTRL) underwent standard 19-channels EEG recordings during resting conditions. Three-second-lasting EEG epochs centred on each blink instance were submitted to time-frequency analyses in order to extract the normalized Blink-Related Synchronization/Desynchronization (nBRS/BRD) of three bands of interest (low-alpha, high-alpha and low-beta) in the time-window of 50-550 ms after the blink-peak and to estimate the corresponding cortical sources of electrical activity. VS/UWS nBRS/BRD levels of all three bands were lower than those related to both CTRL and MCS, thus enabling the differential diagnosis between MCS and VS/UWS. Furthermore, MCS showed an intermediate signal intensity on PCC/PCu between CTRL and VS/UWS and a higher signal intensity on the left temporo-parieto-occipital junction and inferior occipito-temporal regions when compared to VS/UWS. This peculiar pattern of activation leads us to hypothesize that resting MCS patients have a bottom-up driven activation of the task positive network and thus are tendentially prone to respond to environmental stimuli, even though in an almost unintentional way.File | Dimensione | Formato | |
---|---|---|---|
Bonfiglio et al. 2014 pone 9; e93252.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/974279
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo