The RING-finger promyelocytic leukemia (PML) protein is the product of the PML gene that fuses with the retinoic acid receptor-α gene in the t(15; 17) translocation of acute promyelocytic leukemia. Wild-type PML localizes in the nucleus with a typical speckled pattern that is a consequence of the concentration of the protein within discrete subnuclear domains known as nuclear bodies. Delocalization of PML from nuclear bodies has been documented in acute promyelocytic leukemia cells and suggested to contribute to leukemogenesis. In an attempt to get new insights into the function of the wild-type PML protein and to investigate whether it displays an altered expression pattern in neoplasms other than acute promyelocytic leukemia, we stained a large number of normal and neoplastic human tissues with a new murine monoclonal antibody (PG-M3) directed against the amino-terminal region of PML. As the PG-M3 epitope is partially resistant to fixatives, only cells that overexpress PML are detected by the antibody in microwave-heated paraffin sections. Among normal tissues, PML was characteristically up- regulated in activated epithelioid histiocytes and fibroblasts in a variety of pathological conditions, columnar epithelium in small active thyroid follicles, well differentiated foamy cells in the center of sebaceous glands, and hypersecretory endometria (Arias-Stella). Interferons, the PML of which is a primary target gene, and estrogens are likely to represent some of the cytokines and/or hormones that may be involved in the up-regulation of PML under these circumstances. In keeping with this concept, we found that PML is frequently overexpressed in Hodgkin and Reed-Sternberg cells of Hodgkin's disease, a tumor of cytokine-producing cells. Among solid tumors, overexpression of PML was frequently found in carcinomas of larynx and thyroid (papillary), epithelial thymomas, and Kaposi's sarcoma, whereas carcinomas of the lung, thyroid (follicular), breast, and colon were frequently negative or weakly PML+. We did not observe any changes in the levels of PML expression as the lesion progressed from benign dysplasia to carcinoma. Our immunohistological data are consistent with the hypothesized growth suppressor function of PML and strongly suggest that PML expression levels are likely to be modulated by a variety of stimuli, including cytokines and hormones.
Gambacorta, M., Flenghi, L., Fagioli, M., Pileri, S., Leoncini, L., Bigerna, B., et al. (1996). Heterogeneous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues. THE AMERICAN JOURNAL OF PATHOLOGY, 149(6), 2023-2035.
Heterogeneous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues
LEONCINI L.;
1996-01-01
Abstract
The RING-finger promyelocytic leukemia (PML) protein is the product of the PML gene that fuses with the retinoic acid receptor-α gene in the t(15; 17) translocation of acute promyelocytic leukemia. Wild-type PML localizes in the nucleus with a typical speckled pattern that is a consequence of the concentration of the protein within discrete subnuclear domains known as nuclear bodies. Delocalization of PML from nuclear bodies has been documented in acute promyelocytic leukemia cells and suggested to contribute to leukemogenesis. In an attempt to get new insights into the function of the wild-type PML protein and to investigate whether it displays an altered expression pattern in neoplasms other than acute promyelocytic leukemia, we stained a large number of normal and neoplastic human tissues with a new murine monoclonal antibody (PG-M3) directed against the amino-terminal region of PML. As the PG-M3 epitope is partially resistant to fixatives, only cells that overexpress PML are detected by the antibody in microwave-heated paraffin sections. Among normal tissues, PML was characteristically up- regulated in activated epithelioid histiocytes and fibroblasts in a variety of pathological conditions, columnar epithelium in small active thyroid follicles, well differentiated foamy cells in the center of sebaceous glands, and hypersecretory endometria (Arias-Stella). Interferons, the PML of which is a primary target gene, and estrogens are likely to represent some of the cytokines and/or hormones that may be involved in the up-regulation of PML under these circumstances. In keeping with this concept, we found that PML is frequently overexpressed in Hodgkin and Reed-Sternberg cells of Hodgkin's disease, a tumor of cytokine-producing cells. Among solid tumors, overexpression of PML was frequently found in carcinomas of larynx and thyroid (papillary), epithelial thymomas, and Kaposi's sarcoma, whereas carcinomas of the lung, thyroid (follicular), breast, and colon were frequently negative or weakly PML+. We did not observe any changes in the levels of PML expression as the lesion progressed from benign dysplasia to carcinoma. Our immunohistological data are consistent with the hypothesized growth suppressor function of PML and strongly suggest that PML expression levels are likely to be modulated by a variety of stimuli, including cytokines and hormones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/9467
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo