We construct an incomplete 3-c.e. enumeration degree which is maximal among the n-c.e, enumeration degrees for every n with $3 \leq n \leq \omega$. Consequently the n-c.e. enumeration degrees are not dense for any such n. We show also that no low n-c.e, e-degree can be maximal among the n-c.e. e-degrees, for $2 \leq n \leq \omega$.

Cooper, S.B., Li, A., Sorbi, A., Yang, Y. (2003). There exists a maximal 3-c.e. enumeration degree. ISRAEL JOURNAL OF MATHEMATICS, 137(1), 285-320 [10.1007/BF02785966].

There exists a maximal 3-c.e. enumeration degree

SORBI, ANDREA;
2003-01-01

Abstract

We construct an incomplete 3-c.e. enumeration degree which is maximal among the n-c.e, enumeration degrees for every n with $3 \leq n \leq \omega$. Consequently the n-c.e. enumeration degrees are not dense for any such n. We show also that no low n-c.e, e-degree can be maximal among the n-c.e. e-degrees, for $2 \leq n \leq \omega$.
2003
Cooper, S.B., Li, A., Sorbi, A., Yang, Y. (2003). There exists a maximal 3-c.e. enumeration degree. ISRAEL JOURNAL OF MATHEMATICS, 137(1), 285-320 [10.1007/BF02785966].
File in questo prodotto:
File Dimensione Formato  
fulltext-3ce.pdf

non disponibili

Descrizione: Articolo unico
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/9154