We construct an incomplete 3-c.e. enumeration degree which is maximal among the n-c.e, enumeration degrees for every n with $3 \leq n \leq \omega$. Consequently the n-c.e. enumeration degrees are not dense for any such n. We show also that no low n-c.e, e-degree can be maximal among the n-c.e. e-degrees, for $2 \leq n \leq \omega$.
Cooper, S.B., Li, A., Sorbi, A., Yang, Y. (2003). There exists a maximal 3-c.e. enumeration degree. ISRAEL JOURNAL OF MATHEMATICS, 137(1), 285-320 [10.1007/BF02785966].
There exists a maximal 3-c.e. enumeration degree
SORBI, ANDREA;
2003-01-01
Abstract
We construct an incomplete 3-c.e. enumeration degree which is maximal among the n-c.e, enumeration degrees for every n with $3 \leq n \leq \omega$. Consequently the n-c.e. enumeration degrees are not dense for any such n. We show also that no low n-c.e, e-degree can be maximal among the n-c.e. e-degrees, for $2 \leq n \leq \omega$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
fulltext-3ce.pdf
non disponibili
Descrizione: Articolo unico
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/9154