The large-sample properties of the modified Monte Carlo integration method with locally antithetic variates proposed by Haber (Math. Comput. 21 (1967) 388) are provided under the mild assumption that the integrand is a C-1 function. Moreover, the asymptotic distribution of the modified Monte Carlo estimator is obtained under the same condition. Furthermore, we propose a consistent variance estimation method, which avoids the replicated procedure considered by Haber (1967) which reduces the efficiency of this integration technique. On the basis of the achieved results, in addition to the integration framework, the method may be conveniently applied in the environmental sampling setting. (c) 2004 Elsevier B.V. All rights reserved.

Barabesi, L., Marcheselli, M. (2005). Some large-sample results on a modified Monte Carlo integration method. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 135(2), 420-432 [10.1016/j.jspi.2004.05.010].

Some large-sample results on a modified Monte Carlo integration method

Barabesi, Lucio;Marcheselli, Marzia
2005-01-01

Abstract

The large-sample properties of the modified Monte Carlo integration method with locally antithetic variates proposed by Haber (Math. Comput. 21 (1967) 388) are provided under the mild assumption that the integrand is a C-1 function. Moreover, the asymptotic distribution of the modified Monte Carlo estimator is obtained under the same condition. Furthermore, we propose a consistent variance estimation method, which avoids the replicated procedure considered by Haber (1967) which reduces the efficiency of this integration technique. On the basis of the achieved results, in addition to the integration framework, the method may be conveniently applied in the environmental sampling setting. (c) 2004 Elsevier B.V. All rights reserved.
2005
Barabesi, L., Marcheselli, M. (2005). Some large-sample results on a modified Monte Carlo integration method. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 135(2), 420-432 [10.1016/j.jspi.2004.05.010].
File in questo prodotto:
File Dimensione Formato  
jspi2005.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 215.23 kB
Formato Adobe PDF
215.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/9038
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo